Machine learning-assisted design of high-entropy alloys with superior mechanical properties

被引:6
作者
He, Jianye [1 ,3 ]
Li, Zezhou [1 ,2 ,3 ]
Zhao, Pingluo [1 ,3 ]
Zhang, Hongmei [1 ,2 ,3 ]
Zhang, Fan [1 ,2 ,3 ]
Wang, Lin [1 ,3 ]
Cheng, Xingwang [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063000, Peoples R China
[3] Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 33卷
基金
中国国家自然科学基金;
关键词
HYDROGEN STORAGE PROPERTIES; FEATURE-SELECTION; FATIGUE BEHAVIOR; NEURAL-NETWORKS; PHASE; MICROSTRUCTURE; ALGORITHMS; PREDICTION; CLASSIFICATION; FRAMEWORK;
D O I
10.1016/j.jmrt.2024.09.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most recently, high-entropy alloys (HEAs) with 5 or more elements open a new area for materials exploration with substantial mechanical properties. The large composition space and numerous structures of HEAs bring significant difficulties for phase design and determination of mechanical property. Machine learning, one of most rapidly growing scientific and technical field, meets at the intersection of computer science and materials science, and at the center of artificial intelligence. Machine learning provides the opportunity to build up the relationship between multiple physical properties and mechanical properties. The fast changes of this field call for significant practice for materials community to utilize it as a more efficient, accurate and interpretable tool. In this review, we summarize the most promising machine learning models, combined with high-throughput simulation and experimental screening, to predict and fabricate HEAs with desired superb mechanical properties.
引用
收藏
页码:260 / 286
页数:27
相关论文
共 179 条
[71]   Preternatural Hexagonal High-Entropy Alloys: A Review [J].
Li, Rui-Xuan ;
Qiao, Jun-Wei ;
Liaw, Peter K. ;
Zhang, Yong .
ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2020, 33 (08) :1033-1045
[72]   Mechanical behavior of high-entropy alloys [J].
Li, Weidong ;
Xie, Di ;
Li, Dongyue ;
Zhang, Yong ;
Gao, Yanfei ;
Liaw, Peter K. .
PROGRESS IN MATERIALS SCIENCE, 2021, 118
[73]   Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy [J].
Li, Xiang-Guo ;
Chen, Chi ;
Zheng, Hui ;
Zuo, Yunxing ;
Ong, Shyue Ping .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[74]   Machine-learning model for predicting phase formations of high-entropy alloys [J].
Li, Yao ;
Guo, Wanlin .
PHYSICAL REVIEW MATERIALS, 2019, 3 (09)
[75]   Convolutional neural network-assisted recognition of nanoscale L12 ordered structures in face-centred cubic alloys [J].
Li, Yue ;
Zhou, Xuyang ;
Colnaghi, Timoteo ;
Wei, Ye ;
Marek, Andreas ;
Li, Hongxiang ;
Bauer, Stefan ;
Rampp, Markus ;
Stephenson, Leigh T. .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
[76]   Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J].
Li, Zezhou ;
Zhao, Shiteng ;
Ritchie, Robert O. ;
Meyers, Marc A. .
PROGRESS IN MATERIALS SCIENCE, 2019, 102 :296-345
[77]   Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J].
Li, Zhiming ;
Pradeep, Konda Gokuldoss ;
Deng, Yun ;
Raabe, Dierk ;
Tasan, Cemal Cem .
NATURE, 2016, 534 (7606) :227-+
[78]   New structure in refractory high-entropy alloys [J].
Lilensten, L. ;
Couzinie, J. P. ;
Perriere, L. ;
Bourgon, J. ;
Emery, N. ;
Guillot, I. .
MATERIALS LETTERS, 2014, 132 :123-125
[79]   The Mythos of Model Interpretability [J].
Lipton, Zachary C. .
COMMUNICATIONS OF THE ACM, 2018, 61 (10) :36-43
[80]   Toward integrating feature selection algorithms for classification and clustering [J].
Liu, H ;
Yu, L .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (04) :491-502