Machine learning-assisted design of high-entropy alloys with superior mechanical properties

被引:6
作者
He, Jianye [1 ,3 ]
Li, Zezhou [1 ,2 ,3 ]
Zhao, Pingluo [1 ,3 ]
Zhang, Hongmei [1 ,2 ,3 ]
Zhang, Fan [1 ,2 ,3 ]
Wang, Lin [1 ,3 ]
Cheng, Xingwang [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Tangshan Res Inst, Tangshan 063000, Peoples R China
[3] Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 33卷
基金
中国国家自然科学基金;
关键词
HYDROGEN STORAGE PROPERTIES; FEATURE-SELECTION; FATIGUE BEHAVIOR; NEURAL-NETWORKS; PHASE; MICROSTRUCTURE; ALGORITHMS; PREDICTION; CLASSIFICATION; FRAMEWORK;
D O I
10.1016/j.jmrt.2024.09.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most recently, high-entropy alloys (HEAs) with 5 or more elements open a new area for materials exploration with substantial mechanical properties. The large composition space and numerous structures of HEAs bring significant difficulties for phase design and determination of mechanical property. Machine learning, one of most rapidly growing scientific and technical field, meets at the intersection of computer science and materials science, and at the center of artificial intelligence. Machine learning provides the opportunity to build up the relationship between multiple physical properties and mechanical properties. The fast changes of this field call for significant practice for materials community to utilize it as a more efficient, accurate and interpretable tool. In this review, we summarize the most promising machine learning models, combined with high-throughput simulation and experimental screening, to predict and fabricate HEAs with desired superb mechanical properties.
引用
收藏
页码:260 / 286
页数:27
相关论文
共 179 条
[21]  
Debnath A, 2021, J MATER INFORM, V1, DOI 10.20517/jmi.2021.05
[22]   Scientific AI in materials science: a path to a sustainable and scalable paradigm [J].
DeCost, B. L. ;
Hattrick-Simpers, J. R. ;
Trautt, Z. ;
Kusne, A. G. ;
Campo, E. ;
Green, M. L. .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (03)
[23]   Fundamental deformation behavior in high-entropy alloys: An overview [J].
Diao, H. Y. ;
Feng, R. ;
Dahmen, K. A. ;
Liaw, P. K. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2017, 21 (05) :252-266
[24]   Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy [J].
Feng, Rui ;
Rao, You ;
Liu, Chuhao ;
Xie, Xie ;
Yu, Dunji ;
Chen, Yan ;
Ghazisaeidi, Maryam ;
Ungar, Tamas ;
Wang, Huamiao ;
An, Ke ;
Liaw, Peter K. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[25]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[26]   Pruning algorithms for rule learning [J].
Furnkranz, J .
MACHINE LEARNING, 1997, 27 (02) :139-171
[27]   Searching for Next Single-Phase High-Entropy Alloy Compositions [J].
Gao, Michael C. ;
Alman, David E. .
ENTROPY, 2013, 15 (10) :4504-4519
[28]   High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J].
George, E. P. ;
Curtin, W. A. ;
Tasan, C. C. .
ACTA MATERIALIA, 2020, 188 :435-474
[29]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534
[30]   High cycle fatigue deformation mechanisms of a single phase CrMnFeCoNi high entropy alloy [J].
Ghomsheh, M. Zare ;
Khatibi, G. ;
Weiss, B. ;
Lederer, M. ;
Schwarz, S. ;
Steiger-Thirsfeld, A. ;
Tikhonovsky, M. A. ;
Tabachnikova, E. D. ;
Schafler, E. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 777