SAFENet: Semantic-Aware Feature Enhancement Network for unsupervised cross-domain road scene segmentation

被引:0
|
作者
Ren, Dexin [1 ,2 ]
Li, Minxian [1 ,2 ]
Wang, Shidong [3 ]
Ren, Mingwu [1 ,2 ]
Zhang, Haofeng [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, State Key Lab Intelligent Mfg Adv Construct Machin, Nanjing 210094, Peoples R China
[3] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, England
基金
中国国家自然科学基金;
关键词
Unsupervised domain adaptation; Semantic segmentation; Semantic-Aware Feature Enhancement; Adaptive instance normalization; Knowledge transfer;
D O I
10.1016/j.imavis.2024.105318
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised cross-domain road scene segmentation has attracted substantial interest because of its capability to perform segmentation on new and unlabeled domains, thereby reducing the dependence on expensive manual annotations. This is achieved by leveraging networks trained on labeled source domains to classify images on unlabeled target domains. Conventional techniques usually use adversarial networks to align inputs from the source and the target in either of their domains. However, these approaches often fall short in effectively integrating information from both domains due to Alignment in each space usually leads to bias problems during feature learning. To overcome these limitations and enhance cross-domain interaction while mitigating overfitting to the source domain, we introduce a novel framework called Semantic-Aware Feature Enhancement Network (SAFENet) for Unsupervised Cross-domain Road Scene Segmentation. SAFENet incorporates the Semantic-Aware Enhancement (SAE) module to amplify the importance of class information in segmentation tasks and uses the semantic space as anew domain to guide the alignment of the source and target domains. Additionally, we integrate Adaptive Instance Normalization with Momentum (AdaINM) techniques, which convert the source domain image style to the target domain image style, thereby reducing the adverse effects of source domain overfitting on target domain segmentation performance. Moreover, SAFENet employs a Knowledge Transfer (KT) module to optimize network architecture, enhancing computational efficiency during testing while maintaining the robust inference capabilities developed during training. To further improve the segmentation performance, we further employ Curriculum Learning, a self- training mechanism that uses pseudo-labels derived from the target domain to iteratively refine the network. Comprehensive experiments on three well-known datasets, "Synthia -> Cityscapes"and "GTA5 -> Cityscapes", demonstrate the superior performance of our method. In-depth examinations and ablation studies verify the efficacy of each module within the proposed method.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] FRNet: Factorized and Regular Blocks Network for Semantic Segmentation in Road Scene
    Lu, Mengxu
    Chen, Zhenxue
    Wu, Q. M. Jonathan
    Wang, Nannan
    Rong, Xuewen
    Yan, Xinghe
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (04) : 3522 - 3530
  • [42] Cross-domain Semantic Feature Learning via Adversarial Adaptation Networks
    Li, Rui
    Cao, Wenming
    Qian, Sheng
    Wong, Hau-San
    Wu, Si
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 37 - 42
  • [43] Neutral Cross-Entropy Loss Based Unsupervised Domain Adaptation for Semantic Segmentation
    Xu, Hanqing
    Yang, Ming
    Deng, Liuyuan
    Qian, Yeqiang
    Wang, Chunxiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4516 - 4525
  • [44] Prototype-Guided Multitask Adversarial Network for Cross-Domain LiDAR Point Clouds Semantic Segmentation
    Yuan, Zhimin
    Cheng, Ming
    Zeng, Wankang
    Su, Yanfei
    Liu, Weiquan
    Yu, Shangshu
    Wang, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [45] Semantic-aware unsupervised domain adaptation for height estimation from single-view aerial images
    Zhao, Wufan
    Persello, Claudio
    Stein, Alfred
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 196 : 372 - 385
  • [46] S&GDA: An Unsupervised Domain Adaptive Semantic Segmentation Framework Considering Both Imaging Scene and Geometric Domain Shifts
    Chen, Hui
    Cheng, Liang
    Li, Ning
    Yao, Yunchang
    Cheng, Jian
    Zhang, Ka
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] Category-Level Adversaries for Outdoor LiDAR Point Clouds Cross-Domain Semantic Segmentation
    Yuan, Zhimin
    Wen, Chenglu
    Cheng, Ming
    Su, Yanfei
    Liu, Weiquan
    Yu, Shangshu
    Wang, Cheng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1982 - 1993
  • [48] Depth-Assisted ResiDualGAN for Cross-Domain Aerial Images Semantic Segmentation
    Yang, Zhao
    Guo, Peng
    Gao, Han
    Chen, Xiuwan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [49] Source-Data-Free Cross-Domain Knowledge Transfer for Semantic Segmentation
    Li, Zongyao
    Togo, Ren
    Ogawa, Takahiro
    Haseyama, Miki
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 92 - 100
  • [50] Depth-Assisted ResiDualGAN for Cross-Domain Aerial Images Semantic Segmentation
    Yang, Zhao
    Guo, Peng
    Gao, Han
    Chen, Xiuwan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20