SAFENet: Semantic-Aware Feature Enhancement Network for unsupervised cross-domain road scene segmentation

被引:0
|
作者
Ren, Dexin [1 ,2 ]
Li, Minxian [1 ,2 ]
Wang, Shidong [3 ]
Ren, Mingwu [1 ,2 ]
Zhang, Haofeng [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, State Key Lab Intelligent Mfg Adv Construct Machin, Nanjing 210094, Peoples R China
[3] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, England
基金
中国国家自然科学基金;
关键词
Unsupervised domain adaptation; Semantic segmentation; Semantic-Aware Feature Enhancement; Adaptive instance normalization; Knowledge transfer;
D O I
10.1016/j.imavis.2024.105318
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised cross-domain road scene segmentation has attracted substantial interest because of its capability to perform segmentation on new and unlabeled domains, thereby reducing the dependence on expensive manual annotations. This is achieved by leveraging networks trained on labeled source domains to classify images on unlabeled target domains. Conventional techniques usually use adversarial networks to align inputs from the source and the target in either of their domains. However, these approaches often fall short in effectively integrating information from both domains due to Alignment in each space usually leads to bias problems during feature learning. To overcome these limitations and enhance cross-domain interaction while mitigating overfitting to the source domain, we introduce a novel framework called Semantic-Aware Feature Enhancement Network (SAFENet) for Unsupervised Cross-domain Road Scene Segmentation. SAFENet incorporates the Semantic-Aware Enhancement (SAE) module to amplify the importance of class information in segmentation tasks and uses the semantic space as anew domain to guide the alignment of the source and target domains. Additionally, we integrate Adaptive Instance Normalization with Momentum (AdaINM) techniques, which convert the source domain image style to the target domain image style, thereby reducing the adverse effects of source domain overfitting on target domain segmentation performance. Moreover, SAFENet employs a Knowledge Transfer (KT) module to optimize network architecture, enhancing computational efficiency during testing while maintaining the robust inference capabilities developed during training. To further improve the segmentation performance, we further employ Curriculum Learning, a self- training mechanism that uses pseudo-labels derived from the target domain to iteratively refine the network. Comprehensive experiments on three well-known datasets, "Synthia -> Cityscapes"and "GTA5 -> Cityscapes", demonstrate the superior performance of our method. In-depth examinations and ablation studies verify the efficacy of each module within the proposed method.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Semantic-aware short path adversarial training for cross-domain semantic segmentation
    Shan, Yuhu
    Chew, Chee Meng
    Lu, Wen Feng
    NEUROCOMPUTING, 2020, 380 : 125 - 132
  • [2] Unsupervised semantic-aware adaptive feature fusion network for arrhythmia detection
    Feng, Panpan
    Fu, Jie
    Ge, Zhaoyang
    Wang, Haiyan
    Zhou, Yanjie
    Zhou, Bing
    Wang, Zongmin
    INFORMATION SCIENCES, 2022, 582 : 509 - 528
  • [3] Cross-Domain Scene Unsupervised Learning Segmentation With Dynamic Subdomains
    He, Pei
    Jiao, Licheng
    Liu, Fang
    Liu, Xu
    Shang, Ronghua
    Wang, Shuang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6770 - 6784
  • [4] Uncertainty-aware consistency regularization for cross-domain semantic segmentation
    Zhou, Qianyu
    Feng, Zhengyang
    Gu, Qiqi
    Cheng, Guangliang
    Lu, Xuequan
    Shi, Jianping
    Ma, Lizhuang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221
  • [5] Semantic-Aware Message Broadcasting for Efficient Unsupervised Domain Adaptation
    Li, Xin
    Lan, Cuiling
    Wei, Guoqiang
    Chen, Zhibo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5340 - 5353
  • [6] Multi-feature fusion network for road scene semantic segmentation
    Sun, Jiaxing
    Li, Yujie
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 92 (92)
  • [7] BSAM: Bidirectional Scene-Aware Mixup for Unsupervised Domain Adaptation in Semantic Segmentation
    Xing, Congying
    Li, Gao
    Zhang, Lefei
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 54 - 66
  • [8] Structured serialization semantic transfer network for unsupervised cross-domain and retrieval
    Song, Dan
    Yang, Yuanxiang
    Li, Wenhui
    Li, Xuanya
    Liu, Min
    Liu, An-An
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (01)
  • [9] Unsupervised domain adaptation alignment method for cross-domain semantic segmentation of remote sensing images
    Shen Z.
    Ni H.
    Guan H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (12): : 1 - 2
  • [10] A global reweighting approach for cross-domain semantic segmentation
    Zhang, Yuhang
    Tian, Shishun
    Liao, Muxin
    Hua, Guoguang
    Zou, Wenbin
    Xu, Chen
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 130