Optimization of MBE-grown GaSb buffer on GaAs substrates for infrared detectors

被引:0
作者
Jarosz, Dawid [1 ]
Bobko, Ewa [1 ]
Trzyna-Sowa, Malgorzata [1 ]
Przezdziecka, Ewa [2 ]
Stachowicz, Marcin [2 ]
Ruszala, Marta [1 ]
Krzeminski, Piotr [1 ]
Jus, Anna [1 ]
Mas, Kinga [1 ]
Wojnarowska-Nowak, Renata [1 ]
Nowak, Oskar [1 ]
Gudyka, Daria [1 ]
Tabor, Brajan [1 ]
Marchewka, Michal [1 ]
机构
[1] Univ Rzeszow, Inst Mat Engn, Ctr Microelect & Nanotechnol, Al Rejtana 16, PL-35959 Rzeszow, Poland
[2] Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
关键词
gallium arsenide; gallium antimonide; molecular beam epitaxy; heteroepitaxy; II INAS/GASB SUPERLATTICE; MOLECULAR-BEAM EPITAXY; LAYERS;
D O I
10.24425/opelre.2024.152620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this work was to improve the quality of the GaSb buffer layers on GaAs substrates using the molecular beam epitaxy (MBE) technology. The high quality of the GaSb buffer layers is one of the most important elements enabling the synthesis of good quality of type- II superlattices (T2SL) structures for infrared applications. The main challenges in this regard are: compensation of the difference in lattice constants between GaAs and GaSb and obtaining the highest achievable surface quality of the final GaSb layer. In the literature, many authors describe different techniques to obtain the best quality of a GaSb buffer layer. In this work, we present the results of HRXRD, AFM, TOF-SIMS, SEM, and Nomarski optical microscope measurements obtained for 2 mu m thick GaSb buffer layers. The GaSb layers are made according to different techniques and these results are compared with a GaSb buffer construction technique according to our own technology. During the processes, we also obtained an unintentional structure of one of the buffer layers, which allowed us to obtain very good results in terms of surface structure and crystallographic quality where FWHM in S RC scan was equal to 138 arcsec and RMS 0.20 nm proving that there is still a lot of work to be done in this area.
引用
收藏
页数:7
相关论文
共 24 条
[1]   DISLOCATION BEHAVIOR IN INGAAS STEP-GRADED AND ALTERNATING STEP-GRADED STRUCTURES - DESIGN RULES FOR BUFFER FABRICATION [J].
ARAUJO, D ;
GONZALEZ, D ;
GARCIA, R ;
SACEDON, A ;
CALLEJA, E .
APPLIED PHYSICS LETTERS, 1995, 67 (24) :3632-3634
[2]   Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy [J].
Benyahia, D. ;
Kubiszyn, L. ;
Michalczewski, K. ;
Keblowski, A. ;
Martyniuk, P. ;
Piotrowski, J. ;
Rogalski, A. .
OPTO-ELECTRONICS REVIEW, 2016, 24 (01) :40-45
[3]   Material and device characterization of Type-II InAs/GaSb superlattice infrared detectors [J].
Delmas, M. ;
Debnath, M. C. ;
Liang, B. L. ;
Huffaker, D. L. .
INFRARED PHYSICS & TECHNOLOGY, 2018, 94 :286-290
[4]   Control of phase modulation in InGaAs epilayers [J].
González, D ;
Aragón, G ;
Araújo, D ;
García, R .
APPLIED PHYSICS LETTERS, 2000, 76 (22) :3236-3238
[5]   Solid solution strengthening in GaSb/GaAs: A mode to reduce the TD density through Be-doping [J].
Gutierrez, M. ;
Araujo, D. ;
Jurczak, P. ;
Wu, J. ;
Liu, H. .
APPLIED PHYSICS LETTERS, 2017, 110 (09)
[6]   Molecular beam epitaxy of GaSb on GaAs substrates with AlSb/GaSb compound buffer layers [J].
Hao, Ruiting ;
Deng, Shukang ;
Shen, Lanxian ;
Yang, Peizhi ;
Tu, Jielei ;
Liao, Hua ;
Xu, Yingqiang ;
Niu, Zhichuan .
THIN SOLID FILMS, 2010, 519 (01) :228-230
[7]   Quantum efficiency contributions for type-II InAs/GaSb SL photodetectors [J].
Hostut, M. ;
Ergun, Y. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2021, 130
[8]   Strain relief by periodic misfit arrays for low defect density GaSb on GaAs [J].
Huang, SH ;
Balakrishnan, G ;
Khoshakhlagh, A ;
Jallipalli, A ;
Dawson, LR ;
Huffaker, DL .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[9]   Structural Analysis of Highly Relaxed GaSb Grown on GaAs Substrates with Periodic Interfacial Array of 90A° Misfit Dislocations [J].
Jallipalli, A. ;
Balakrishnan, G. ;
Huang, S. H. ;
Rotter, T. J. ;
Nunna, K. ;
Liang, B. L. ;
Dawson, L. R. ;
Huffaker, D. L. .
NANOSCALE RESEARCH LETTERS, 2009, 4 (12) :1458-1462
[10]  
Jarosz D., 2023, Polish Patent Application