Adaptive Attention Mechanism Fusion for Real-Time Semantic Segmentation in Complex Scenes

被引:0
|
作者
Chen, Dan [1 ]
Liu, Le [1 ]
Wang, Chenhao [2 ]
Bai, Xiru [1 ]
Wang, Zichen [1 ]
机构
[1] School of Automation and Information Engineering, Xi’an University of Technology, Xi’an,710048, China
[2] School of Electronic and Information Engineering, Shaanxi Vocational and Technical College, Xi’an,710038, China
关键词
Convolutional neural networks - Image fusion;
D O I
10.11999/JEIT231338
中图分类号
学科分类号
摘要
Realizing high accuracy and low computational burden is a serious challenge faced by Convolutional Neural Network (CNN) for real-time semantic segmentation. In this paper, an efficient real-time semantic segmentation Adaptive Attention mechanism Fusion Network(AAFNet) is designed for complex urban street scenes with numerous types of targets and large changes in lighting. Image spatial details and semantic information are respectively extracted by the network, and then, through Feature Fusion Network(FFN), accurate semantic images are obtained. Dilated Deep-Wise separable convolution (DDW) is adopted by AAFNet to increase the receptive field of semantic feature extraction, an Adaptive Attention mechanism Fusion Module (AAFM) is proposed, which combines Adaptive average pooling(Avp) and Adaptive max pooling(Amp) to refine the edge segmentation effect of the target and reduce the leakage rate of small targets. Finally, semantic segmentation experiments are performed on the Cityscapes and CamVid datasets for complex urban street scenes. The designed AAFNet achieves 73.0% and 69.8% mean Intersection over Union (mIoU) at inference speeds of 32 fps (Cityscapes) and 52 fps (CamVid). Compared with Dilated Spatial Attention Network (DSANet), Multi-Scale Context Fusion Network (MSCFNet), and Lightweight Bilateral Asymmetric Residual Network (LBARNet), AAFNet has the highest segmentation accuracy. © 2024 Science Press. All rights reserved.
引用
收藏
页码:3334 / 3342
相关论文
共 50 条
  • [1] Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion
    Wu, Bao
    Xiong, Xingzhong
    Wang, Yong
    ELECTRONICS, 2024, 13 (18)
  • [2] Real-time Hierarchical Fusion System for Semantic Segmentation in Offroad Scenes
    Dang, Kang
    Hoy, Michael
    Dauwels, Justin
    Yuan, Junsong
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 72 - 77
  • [3] Joint pyramid attention network for real-time semantic segmentation of urban scenes
    Xuegang Hu
    Liyuan Jing
    Uroosa Sehar
    Applied Intelligence, 2022, 52 : 580 - 594
  • [4] Joint pyramid attention network for real-time semantic segmentation of urban scenes
    Hu, Xuegang
    Jing, Liyuan
    Sehar, Uroosa
    APPLIED INTELLIGENCE, 2022, 52 (01) : 580 - 594
  • [5] ASFNet: Adaptive multiscale segmentation fusion network for real-time semantic segmentation
    Zha, Hengfeng
    Liu, Rui
    Yang, Xin
    Zhou, Dongsheng
    Zhang, Qiang
    Wei, Xiaopeng
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2021, 32 (3-4)
  • [6] DSANet: Dilated spatial attention for real-time semantic segmentation in urban street scenes
    Elhassan, Mohammed A. M.
    Huang, Chenxi
    Yang, Chenhui
    Munea, Tewodros Legesse
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
  • [7] Real-time efficient semantic segmentation network based on improved ASPP and parallel fusion module in complex scenes
    Peng Ding
    Huaming Qian
    Yipeng Zhou
    Shuya Yan
    Shibao Feng
    Shuang Yu
    Journal of Real-Time Image Processing, 2023, 20
  • [8] Real-time efficient semantic segmentation network based on improved ASPP and parallel fusion module in complex scenes
    Ding, Peng
    Qian, Huaming
    Zhou, Yipeng
    Yan, Shuya
    Feng, Shibao
    Yu, Shuang
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2023, 20 (03)
  • [9] Real-Time Semantic Segmentation With Fast Attention
    Hu, Ping
    Perazzi, Federico
    Heilbron, Fabian Caba
    Wang, Oliver
    Lin, Zhe
    Saenko, Kate
    Sclaroff, Stan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (01) : 263 - 270
  • [10] Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes
    Su, Xu
    Li, Lihong
    Xiao, Jiejie
    Wang, Pengtao
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (03) : 562 - 572