Quantitative determination of charge trapped at grain boundaries in ionic conductors by impedance spectroscopy

被引:0
|
作者
Kim, Sangtae [1 ]
Khodorov, Sergey [2 ]
Chernyak, Leonid [3 ]
Defferriere, Thomas [4 ]
Tuller, Harry [4 ]
Lubomirsky, Igor [2 ]
机构
[1] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA USA
[2] Weizmann Inst Sci, Dept Mol Chem & Mat Sci, New York, NY 10017 USA
[3] Univ Cent Florida, Dept Phys, Orlando, FL USA
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
Ionic conductivity; Grain boundaries; Impedance spectroscopy; Space charge; Linear diffusion model; I -V curves; DEFECT CHEMISTRY; SPACE-CHARGE; ELECTRICAL-PROPERTIES; OXYGEN-ION; TRANSPORT; DIFFUSION; TITANATES; CRYSTALS; CARRIERS; BARRIER;
D O I
10.1016/j.ssi.2024.116706
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a method for determining the density of space charge trapped at grain boundaries in polycrystalline solid state ionic conductors. The method is an extension of the earlier proposed Linear Diffusion Model (LDM) that relies on the impedance spectra-derived current-voltage characteristics of grain boundaries. The utility of the extended LDM version is demonstrated to successfully and nondestructively obtain values for the space charge density trapped at the grain boundaries in a variety of oxygen ion conductors including Sr-doped LaGaO3, Y-doped CeO2, and Gd-doped CeO2, and proton conductors including Sr-doped LaNbO3 and Y-doped BaZrO3. For all cases, the density of the space charge trapped at the grain boundaries was <0.2C/m(2), corresponding to a fraction of electron charge per unit cell. The proposed technique, while it lacks the ability to determine the thickness of the grain boundary core when much smaller than the Debye length, it can be used to distinguish between space charge vs insulating layer contributions to the grain boundary resistance.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Electric characterization of grain boundaries in ionic conductors by impedance spectroscopy measurements in a bicrystal
    Frechero, M. A.
    Rocci, M.
    Schmidt, Rainer
    Diaz-Guillen, M. R.
    Dura, O. J.
    Rivera-Calzada, A.
    Santamaria, J.
    Leon, Y. C.
    BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2012, 51 (01): : 13 - 18
  • [2] Dielectric function of ionic conductors studied by impedance spectroscopy
    Dygas, JR
    SOLID STATE IONICS, 2005, 176 (25-28) : 2065 - 2078
  • [3] Impedance spectroscopy of mixed conductors with semi-blocking boundaries
    Jamnik, J
    SOLID STATE IONICS, 2003, 157 (1-4) : 19 - 28
  • [4] IMPEDANCE SPECTROSCOPY OF GRAIN-BOUNDARIES IN NANOPHASE ZNO
    LEE, J
    HWANG, JH
    MASHEK, JJ
    MASON, TO
    MILLER, AE
    SIEGEL, RW
    JOURNAL OF MATERIALS RESEARCH, 1995, 10 (09) : 2295 - 2300
  • [5] Quantitative impedance analysis of solid ionic conductors: Effects of electrode polarization
    Patil, D. S.
    Shimakawa, K.
    Zima, V.
    Wagner, T.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (14)
  • [6] Quantitative impedance analysis of solid ionic conductors: Effects of electrode polarization
    Wagner, T. (tomas.wagner@upce.cz), 1600, American Institute of Physics Inc. (115):
  • [7] Space charge depletion in grain boundaries of BaZrO3 proton conductors
    Shirpour, M.
    Merkle, R.
    Maier, J.
    SOLID STATE IONICS, 2012, 225 : 304 - 307
  • [8] INVESTIGATION OF PHASE-TRANSITIONS OF SOLID IONIC CONDUCTORS BY AUTOMATIC IMPEDANCE SPECTROSCOPY
    BECKER, S
    SCHON, G
    SOLID STATE IONICS, 1984, 13 (02) : 141 - 146
  • [9] Determination of Soil Ionic Concentration using Impedance Spectroscopy
    Pandey, Gunjan
    Kumar, Ratnesh
    Weber, Robert J.
    SENSING TECHNOLOGIES FOR GLOBAL HEALTH, MILITARY MEDICINE, AND ENVIRONMENTAL MONITORING III, 2013, 8723
  • [10] How to interpret current-voltage relationships of blocking grain boundaries in oxygen ionic conductors
    Kim, Seong K.
    Khodorov, Sergey
    Chen, Chien-Ting
    Kim, Sangtae
    Lubomirsky, Igor
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (22) : 8716 - 8721