Adaptive Feature Enhanced Multi-View Stereo With Epipolar Line Information Aggregation

被引:1
作者
Wang, Shaoqian [1 ,2 ]
Li, Bo [1 ,2 ]
Yang, Jian [3 ]
Dai, Yuchao [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Peoples R China
[2] Northwestern Polytech Univ, Shaanxi Key Lab Informat Acquisit & Proc, Xian 710129, Peoples R China
[3] Rocket Force Univ Engn, Xian 710025, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2024年 / 9卷 / 11期
基金
中国国家自然科学基金;
关键词
Correlation; Feature extraction; Costs; Three-dimensional displays; Image reconstruction; Aggregates; Robustness; Data mining; Visualization; Estimation; Epipolar line information aggregation (EIA); feature enhancement; multi-view stereo; perspective transformation;
D O I
10.1109/LRA.2024.3471454
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Despite the promising performance achieved by the learning-based multi-view stereo (MVS) methods, the commonly used feature extractors still struggle with the perspective transformation across different viewpoints. Furthermore, existing methods generally employ a "one-to-many" strategy, computing the correlations between the fixed reference image feature and multiple source image features, which limits the diversity of feature enhancement for the reference image. To address these issues, we propose a novel Epipolar Line Information Aggregati(EIA) method. Specifically, we present a feature enhancement layer (EIA-F) that utilizes the epipolar line information to enhance image features. EIA-F employs a "many-to-many" strategy, adaptively enhancing the reference-source feature pairs with diverse epipolar line information. Additionally, we propose a correlation enhancement module (EIA-C) to improve the robustness of correlations. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple MVS benchmarks, particularly in terms of reconstruction integrity.
引用
收藏
页码:10439 / 10446
页数:8
相关论文
共 36 条
  • [11] Jianfeng Yan, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12349), P674, DOI 10.1007/978-3-030-58548-8_39
  • [12] Kingma D.P., 2014, arXiv, DOI 10.48550/arXiv.1412.6980
  • [13] Tanks and Temples: Benchmarking Large-Scale Scene Reconstruction
    Knapitsch, Arno
    Park, Jaesik
    Zhou, Qian-Yi
    Koltun, Vladlen
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (04):
  • [14] Feature Pyramid Networks for Object Detection
    Lin, Tsung-Yi
    Dollar, Piotr
    Girshick, Ross
    He, Kaiming
    Hariharan, Bharath
    Belongie, Serge
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 936 - 944
  • [15] When Epipolar Constraint Meets Non-local Operators in Multi-View Stereo
    Liu, Tianqi
    Ye, Xinyi
    Zhao, Weiyue
    Pan, Zhiyu
    Shi, Min
    Cao, Zhiguo
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18042 - 18051
  • [16] P-MVSNet: Learning Patch-wise Matching Confidence Aggregation for Multi-View Stereo
    Luo, Keyang
    Guan, Tao
    Ju, Lili
    Huang, Haipeng
    Luo, Yawei
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10451 - 10460
  • [17] EPP-MVSNet: Epipolar-assembling based Depth Prediction for Multi-view Stereo
    Ma, Xinjun
    Gong, Yue
    Wang, Qirui
    Huang, Jingwei
    Chen, Lei
    Yu, Fan
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5712 - 5720
  • [18] DS-Depth: Dynamic and Static Depth Estimation via a Fusion Cost Volume
    Miao, Xingyu
    Bai, Yang
    Duan, Haoran
    Huang, Yawen
    Wan, Fan
    Xu, Xinxing
    Long, Yang
    Zheng, Yefeng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2564 - 2576
  • [19] Don't Forget The Past: Recurrent Depth Estimation from Monocular Video
    Patil, Vaishakh
    Van Gansbeke, Wouter
    Dai, Dengxin
    Van Gool, Luc
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 6813 - 6820
  • [20] View Planning for Multi-View Stereo 3D Reconstruction Using an Autonomous Multicopter
    Schmid, Korbinian
    Hirschmueller, Heiko
    Doemel, Andreas
    Grixa, Iris
    Suppa, Michael
    Hirzinger, Gerd
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2012, 65 (1-4) : 309 - 323