Adaptive Feature Enhanced Multi-View Stereo With Epipolar Line Information Aggregation

被引:1
作者
Wang, Shaoqian [1 ,2 ]
Li, Bo [1 ,2 ]
Yang, Jian [3 ]
Dai, Yuchao [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Peoples R China
[2] Northwestern Polytech Univ, Shaanxi Key Lab Informat Acquisit & Proc, Xian 710129, Peoples R China
[3] Rocket Force Univ Engn, Xian 710025, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2024年 / 9卷 / 11期
基金
中国国家自然科学基金;
关键词
Correlation; Feature extraction; Costs; Three-dimensional displays; Image reconstruction; Aggregates; Robustness; Data mining; Visualization; Estimation; Epipolar line information aggregation (EIA); feature enhancement; multi-view stereo; perspective transformation;
D O I
10.1109/LRA.2024.3471454
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Despite the promising performance achieved by the learning-based multi-view stereo (MVS) methods, the commonly used feature extractors still struggle with the perspective transformation across different viewpoints. Furthermore, existing methods generally employ a "one-to-many" strategy, computing the correlations between the fixed reference image feature and multiple source image features, which limits the diversity of feature enhancement for the reference image. To address these issues, we propose a novel Epipolar Line Information Aggregati(EIA) method. Specifically, we present a feature enhancement layer (EIA-F) that utilizes the epipolar line information to enhance image features. EIA-F employs a "many-to-many" strategy, adaptively enhancing the reference-source feature pairs with diverse epipolar line information. Additionally, we propose a correlation enhancement module (EIA-C) to improve the robustness of correlations. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple MVS benchmarks, particularly in terms of reconstruction integrity.
引用
收藏
页码:10439 / 10446
页数:8
相关论文
共 36 条
  • [1] Large-Scale Data for Multiple-View Stereopsis
    Aanaes, Henrik
    Jensen, Rasmus Ramsbol
    Vogiatzis, George
    Tola, Engin
    Dahl, Anders Bjorholm
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 120 (02) : 153 - 168
  • [2] Cao C., 2023, Trans. Mach. Learn. Res.
  • [3] EI-MVSNet: Epipolar-Guided Multi-View Stereo Network With Interval-Aware Label
    Chang, Jiahao
    He, Jianfeng
    Zhang, Tianzhu
    Yu, Jiyang
    Wu, Feng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 753 - 766
  • [4] Deep Stereo using Adaptive Thin Volume Representation with Uncertainty Awareness
    Cheng, Shuo
    Xu, Zexiang
    Zhu, Shilin
    Li, Zhuwen
    Li, Li Erran
    Ramamoorthi, Ravi
    Su, Hao
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2521 - 2531
  • [5] Cho KYHY, 2014, Arxiv, DOI arXiv:1406.1078
  • [6] TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers
    Ding, Yikang
    Yuan, Wentao
    Zhu, Qingtian
    Zhang, Haotian
    Liu, Xiangyue
    Wang, Yuanjiang
    Liu, Xiao
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8575 - 8584
  • [7] Accurate, Dense, and Robust Multiview Stereopsis
    Furukawa, Yasutaka
    Ponce, Jean
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (08) : 1362 - 1376
  • [8] Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching
    Gu, Xiaodong
    Fan, Zhiwen
    Zhu, Siyu
    Dai, Zuozhuo
    Tan, Feitong
    Tan, Ping
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2492 - 2501
  • [9] Learning Optical Flow, Depth, and Scene Flow Without Real-World Labels
    Guizilini, Vitor
    Lee, Kuan-Hui
    Ambrus, Rares
    Gaidon, Adrien
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 3491 - 3498
  • [10] SurfaceNet: An End-to-end 3D Neural Network for Multiview Stereopsis
    Ji, Mengqi
    Gall, Juergen
    Zheng, Haitian
    Liu, Yebin
    Fang, Lu
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2326 - 2334