SSN: Scale Selection Network for Multi-Scale Object Detection in Remote Sensing Images

被引:0
|
作者
Lin, Zhili [1 ,2 ]
Leng, Biao [1 ,2 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
关键词
deep learning; image processing; computer vision; object detection; remote sensing; SCENE TEXT DETECTION;
D O I
10.3390/rs16193697
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid growth of deep learning technology has made object detection in remote sensing images an important aspect of computer vision, finding applications in military surveillance, maritime rescue, and environmental monitoring. Nonetheless, the capture of remote sensing images at high altitudes causes significant scale variations, resulting in a heterogeneous range of object scales. These varying scales pose significant challenges for detection algorithms. To solve the scale variation problem, traditional detection algorithms compute multi-layer feature maps. However, this approach introduces significant computational redundancy. Inspired by the mechanism of cognitive scaling mechanisms handling multi-scale information, we propose a novel Scale Selection Network (SSN) to eliminate computational redundancy through scale attentional allocation. In particular, we have devised a lightweight Landmark Guided Scale Attention Network, which is capable of predicting potential scales in an image. The detector only needs to focus on the selected scale features, which greatly reduces the inference time. Additionally, a fast Reversible Scale Semantic Flow Preserving strategy is proposed to directly generate multi-scale feature maps for detection. Experiments demonstrate that our method facilitates the acceleration of image pyramid-based detectors by approximately 5.3 times on widely utilized remote sensing object detection benchmarks.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] MSNet: Multi-Scale Network for Object Detection in Remote Sensing Images
    Gao, Tao
    Xia, Shilin
    Liu, Mengkun
    Zhang, Jing
    Chen, Ting
    Li, Ziqi
    PATTERN RECOGNITION, 2025, 158
  • [2] A Multi-Feature Fusion and Attention Network for Multi-Scale Object Detection in Remote Sensing Images
    Cheng, Yong
    Wang, Wei
    Zhang, Wenjie
    Yang, Ling
    Wang, Jun
    Ni, Huan
    Guan, Tingzhao
    He, Jiaxin
    Gu, Yakang
    Tran, Ngoc Nguyen
    REMOTE SENSING, 2023, 15 (08)
  • [3] MERGENET: FEATURE-MERGED NETWORK FOR MULTI-SCALE OBJECT DETECTION IN REMOTE SENSING IMAGES
    Wang, Peijin
    Sun, Xian
    Diao, Wenhui
    Fu, Kun
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 238 - 241
  • [4] MULTI-SCALE FEATURE FUSION NETWORK FOR OBJECT DETECTION IN VHR OPTICAL REMOTE SENSING IMAGES
    Zhang, Wenhua
    Jiao, Licheng
    Liu, Xu
    Liu, Jia
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 330 - 333
  • [5] A lightweight multi-scale context network for salient object detection in optical remote sensing images
    Lin, Yuhan
    Sun, Han
    Liu, Ningzhong
    Bian, Yetong
    Cen, Jun
    Zhou, Huiyu
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 238 - 244
  • [6] Adaptive Anchor Networks for Multi-Scale Object Detection in Remote Sensing Images
    Zhang, Miaohui
    Chen, Yunzhong
    Liu, Xianxing
    Lv, Bingxue
    Wang, Jun
    IEEE ACCESS, 2020, 8 : 57552 - 57565
  • [7] Rotation-aware and multi-scale convolutional neural network for object detection in remote sensing images
    Fu, Kun
    Chang, Zhonghan
    Zhang, Yue
    Xu, Guangluan
    Zhang, Keshu
    Sun, Xian
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 161 (161) : 294 - 308
  • [8] Lightweight Multi-Scale Feature Fusion Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Jun
    Huang, Kaigen
    ELECTRONICS, 2025, 14 (01):
  • [9] Multi-Attention Object Detection Model in Remote Sensing Images Based on Multi-Scale
    Ying, Xiang
    Wang, Qiang
    Li, Xuewei
    Yu, Mei
    Jiang, Han
    Gao, Jie
    Liu, Zhiqiang
    Yu, Ruiguo
    IEEE ACCESS, 2019, 7 : 94508 - 94519
  • [10] Refined multi-scale feature-oriented object detection of the remote sensing images
    Zhang S.
    Li S.
    Wei G.
    Zhang X.
    Gao J.
    National Remote Sensing Bulletin, 2022, 26 (12): : 2616 - 2628