External validation of the myocardial-ischaemic-injury-index machine learning algorithm for the early diagnosis of myocardial infarction: a multicentre cohort study

被引:1
作者
Lopez-Ayala, Pedro [1 ,2 ,4 ]
Boeddinghaus, Jasper [1 ,2 ,4 ,5 ]
Nestelberger, Thomas [1 ,2 ,4 ]
Koechlin, Luca [1 ,2 ,3 ,4 ]
Zimmermann, Tobias [1 ,2 ,4 ]
Bima, Paolo [1 ,2 ,4 ]
Glaeser, Jonas [1 ,2 ,4 ]
Spagnuolo, Carlos C. [1 ,2 ,4 ]
Champetier, Arnaud [1 ,2 ,4 ]
Miro, Oscar [4 ,6 ]
Martin-Sanchez, Francisco Javier [4 ,7 ]
Keller, Dagmar, I [8 ]
Christ, Michael [9 ]
Wildi, Karin [1 ,2 ]
Breidthardt, Tobias [1 ,2 ,4 ]
Strebel, Ivo [1 ,2 ,4 ]
Mueller, Christian [1 ,2 ,4 ]
机构
[1] Univ Basel, Cardiovasc Res Inst Basel, Univ Hosp Basel, CH-4031 Basel, Switzerland
[2] Univ Basel, Dept Cardiol, Univ Hosp Basel, Basel, Switzerland
[3] Univ Basel, Dept Cardiac Surg, Univ Hosp Basel, Basel, Switzerland
[4] GREAT Assoc, Rome, Italy
[5] Univ Edinburgh, BHF Ctr Cardiovasc Sci, Edinburgh, Scotland
[6] Univ Barcelona, Hosp Clin, Emergency Dept, Barcelona, Spain
[7] Hosp Clin San Carlos, Emergency Dept, Madrid, Spain
[8] Klin Gut, Emergency Dept, St Moritz, Switzerland
[9] Luzerner Kantonsspital, Dept Emergency Med, Luzern, Switzerland
来源
LANCET DIGITAL HEALTH | 2024年 / 6卷 / 07期
基金
瑞士国家科学基金会;
关键词
Basel; Switzerland; RULE-OUT; OBSERVE-ZONE; TROPONIN; VALUES;
D O I
10.1016/S2589-7500(24)00088-8
中图分类号
R-058 [];
学科分类号
摘要
Background The myocardial-ischaemic-injury-index (MI3 ) is a novel machine learning algorithm for the early diagnosis of type 1 non -ST -segment elevation myocardial infarction (NSTEMI). The performance of MI3 , both when using early serial blood draws (eg, at 1 h or 2 h) and in direct comparison with guideline-recommended algorithms, remains unknown. Our aim was to externally validate MI3 and compare its performance with that of the European Society of Cardiology (ESC) 0/1h-algorithm. Methods In this secondary analysis of a multicentre international diagnostic cohort study, adult patients (age >18 years) presenting to the emergency department with symptoms suggestive of myocardial infarction were prospectively enrolled from April 21, 2006, to Feb 27, 2019 in 12 centres from five European countries (Switzerland, Spain, Italy, Poland, and Czech Republic). Patients were excluded if they presented with ST -segment -elevation myocardial infarction, did not have at least two serial high-sensitivity cardiac troponin I (hs-cTnI) measurements, or if the final diagnosis remained unclear. The final diagnosis was centrally adjudicated by two independent cardiologists using all available medical records, including serial hs-cTnI measurements and cardiac imaging. The primary outcome was type 1 NSTEMI. The performance of MI3 was directly compared with that of the ESC 0/1h-algorithm. Findings Among 6487 patients, (median age 61<middle dot>0 years [IQR 49<middle dot>0-73<middle dot>0]; 2122 [33%] female and 4365 [67%] male), 882 (13<middle dot>6%) patients had type 1 NSTEMI. The median time difference between the first and second hs-cTnI measurement was 60<middle dot>0 mins (IQR 57<middle dot>0-70<middle dot>0). MI3 performance was very good, with an area under the receiver-operating-characteristic curve of 0<middle dot>961 (95% CI 0<middle dot>957 to 0<middle dot>965) and a good overall calibration (intercept -0<middle dot>09 [-0<middle dot>2 to 0<middle dot>02]; slope 1<middle dot>02 [0<middle dot>97 to 1<middle dot>08]). The originally defined MI3 score of less than 1<middle dot>6 identified 4186 (64<middle dot>5%) patients as low probability of having a type 1 NSTEMI (sensitivity 99<middle dot>1% [95% CI 98<middle dot>2 to 99<middle dot>5]; negative predictive value [NPV] 99<middle dot>8% [95% CI 99<middle dot>6 to 99<middle dot>9]) and an MI3 score of 49<middle dot>7 or more identified 915 (14<middle dot>1%) patients as high probability of having a type 1 NSTEMI (specificity 95<middle dot>0% [94<middle dot>3 to 95<middle dot>5]; positive predictive value [PPV] 69<middle dot>1% [66<middle dot>0-72<middle dot>0]). The sensitivity and NPV of the ESC 0/1h-algorithm were higher than that of MI3 (difference for sensitivity 0<middle dot>88% [0<middle dot>19 to 1<middle dot>60], p=0<middle dot>0082; difference for NPV 0<middle dot>18% [0<middle dot>05 to 0<middle dot>32], p=0<middle dot>016), and the rule-out efficacy was higher for MI3 (11% difference, p<0<middle dot>0001). Specificity and PPV for MI3 were superior (difference for specificity 3<middle dot>80% [3<middle dot>24 to 4<middle dot>36], p<0<middle dot>0001; difference for PPV 7<middle dot>84% [5<middle dot>86 to 9<middle dot>97], p<0<middle dot>0001), and the rule-in efficacy was higher for the ESC 0/1h-algorithm (5<middle dot>4% difference, p<0<middle dot>0001). Interpretation MI3 performs very well in diagnosing type 1 NSTEMI, demonstrating comparability to the ESC 0/1h-algorithm in an emergency department setting when using early serial blood draws. Copyright (c) 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
引用
收藏
页码:e480 / e488
页数:9
相关论文
共 14 条
  • [1] External validation of the myocardial-ischaemic-injury-index machine learning algorithm for the early diagnosis of myocardial infarction: a multicentre cohort study
    Lopez-Ayala, Pedro
    Boeddinghaus, Jasper
    Nestelberger, Thomas
    Koechlin, Luca
    Zimmermann, Tobias
    Bima, Paolo
    Glaeser, Jonas
    Spagnuolo, Carlos C.
    Champetier, Arnaud
    Miro, Oscar
    Martin-Sanchez, Francisco Javier
    Keller, Dagmar, I
    Christ, Michael
    Wildi, Karin
    Breidthardt, Tobias
    Strebel, Ivo
    Mueller, Christian
    LANCET DIGITAL HEALTH, 2024, 6 (07): : e480 - e488
  • [2] Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis
    Doudesis, Dimitrios
    Lee, Kuan Ken
    Yang, Jason
    Wereski, Ryan
    Shah, Anoop S., V
    Tsanas, Athanasios
    Anand, Atul
    Pickering, John W.
    Than, Martin P.
    Mills, Nicholas L.
    LANCET DIGITAL HEALTH, 2022, 4 (05): : E300 - E308
  • [3] Prospective Validation of the 0/1-h Algorithm for Early Diagnosis of Myocardial Infarction
    Twerenbold, Raphael
    Neumann, Johannes Tobias
    Soerensen, Nils Arne
    Ojeda, Francisco
    Karakas, Mahir
    Boeddinghaus, Jasper
    Nestelberger, Thomas
    Badertscher, Patrick
    Gimenez, Maria Rubini
    Puelacher, Christian
    Wildi, Karin
    Kozhuharov, Nikola
    Breitenbuecher, Dominik
    Biskup, Ewelina
    de Lavallaz, Jeanne du Fay
    Flores, Dayana
    Wussler, Desiree
    Miro, Oscar
    Martin Sanchez, F. Javier
    Morawiec, Beata
    Parenica, Jiri
    Geigy, Nicolas
    Keller, Dagmar I.
    Zeller, Tanja
    Reichlin, Tobias
    Blankenberg, Stefan
    Westermann, Dirk
    Mueller, Christian
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 72 (06) : 620 - 632
  • [4] Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations
    Doudesis, Dimitrios M.
    Lee, Kuan Ken
    Boeddinghaus, Jasper
    Bularga, Anda
    Ferry, Amy E.
    Tuck, Chris D.
    Lowry, Matthew T. H.
    Lopez-Ayala, Pedro
    Nestelberger, Thomas
    Koechlin, Luca E.
    Bernabeu, Miguel
    Neubeck, Lis
    Anand, Atul
    Schulz, Karen
    Apple, Fred
    Parsonage, William J.
    Greenslade, Jaimi
    Cullen, Louise
    Pickering, John
    Than, Martin O.
    Gray, Alasdair
    Mueller, Christian W.
    Mills, Nicholas
    CoDE-ACS Investigators
    NATURE MEDICINE, 2023, 29 (05) : 1201 - +
  • [5] External validation of a high-sensitive troponin I algorithm for rapid evaluation of acute myocardial infarction in a Danish cohort
    Andersen, Camilla Fuchs
    Bang, Camilla
    Lauridsen, Kasper Glerup
    Frederiksen, Christian Alcaraz
    Schmidt, Morten
    Jensen, Tage
    Hornung, Nete
    Lofgren, Bo
    EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE, 2021, 10 (09) : 1056 - 1064
  • [6] A multicenter prospective study on the ESC algorithm for the early diagnosis of non-ST-elevation myocardial infarction
    Lin, Yahui
    Zhan, Hong
    Wang, Shukui
    Zhang, Guozheng
    Ye, Zi
    Liu, Caidong
    Wang, Dong
    Gao, Dongfang
    Yang, Qing
    Gong, Zebin
    Feng, Guangxun
    Liu, Min
    Li, Wenke
    Yang, Yanmin
    Zhu, Jun
    Zhou, Zhou
    Liang, Yan
    ISCIENCE, 2024, 27 (09)
  • [7] Adoption of high-sensitivity cardiac troponin for risk stratification of patients with suspected myocardial infarction: a multicentre cohort study
    Mcdermott, Michael
    Kimenai, Dorien M.
    Anand, Atul
    Huang, Zengyi
    Houston, Andrew
    Williams, Sophie
    Evison, Felicity
    Gallier, Suzy
    Carenzo, Catalina
    Glampson, Ben
    Hasan, Madina
    Robertson, Alexander
    Phillips, Thomas
    Davis, Cai
    Sapey, Elizabeth
    Mayer, Erik
    Mason, Suzanne
    Stammers, Matthew
    Mills, Nicholas L.
    LANCET REGIONAL HEALTH-EUROPE, 2024, 43
  • [8] Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction
    Boeddinghaus, Jasper
    Twerenbold, Raphael
    Nestelberger, Thomas
    Badertscher, Patrick
    Wildi, Karin
    Puelacher, Christian
    de Lavallaz, Jeanne du Fay
    Keser, Elif
    Gimenez, Maria Rubini
    Wussler, Desiree
    Kozhuharov, Nikola
    Rentsch, Katharina
    Miro, Oscar
    Martin-Sanchez, F. Javier
    Morawiec, Beata
    Stefanelli, Sabrina
    Geigy, Nicolas
    Keller, Dagmar I.
    Reichlin, Tobias
    Mueller, Christian
    CLINICAL CHEMISTRY, 2018, 64 (09) : 1347 - 1360
  • [9] A feasibility study for CODE -MI: High -sensitivity cardiac troponin?Optimizing the diagnosis of acute myocardial infarction/injury in women
    Zhao, Yinshan
    Sivaswamy, Atul
    Lee, May K.
    Izadnegahdar, Mona
    Chu, Anna
    Ferreira-Leger, Laura E.
    Humphries, Karin H.
    Udell, Jacob A.
    AMERICAN HEART JOURNAL, 2021, 234 : 60 - 70
  • [10] Preoperative systemic inflammation and perioperative myocardial injury: prospective observational multicentre cohort study of patients undergoing non-cardiac surgery
    Ackland, G. L.
    Abbott, T. E. F.
    Cain, D.
    Edwards, M. R.
    Sultan, P.
    Karmali, S. N.
    Fowler, A. J.
    Whittle, J. R.
    MacDonald, N. J.
    Reyes, A.
    Paredes, L. Gallego
    Stephens, R. C. M.
    Del Arroyo, A. Gutierrez
    Woldman, S.
    Archbold, R. A.
    Wragg, A.
    Kam, E.
    Ahmad, T.
    Khan, A. W.
    Niebrzegowska, E.
    Pearse, R. M.
    BRITISH JOURNAL OF ANAESTHESIA, 2019, 122 (02) : 180 - 187