Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells

被引:5
作者
Fu, Boyang [1 ]
Mozdzierz, Maciej [1 ]
Kulka, Andrzej [1 ,2 ]
Swierczek, Konrad [1 ,2 ]
机构
[1] AGH Univ Krakow, Fac Energy & Fuels, Al A Mickiewicza 30, PL-30059 Krakow, Poland
[2] AGH Univ Sci & Technol, AGH Ctr Energy, Ul Czarnowiejska 36, PL-30054 Krakow, Poland
关键词
lithium-ion batteries; cathode materials; nickel-rich layered oxides; recent progress; critical issues; improvement strategies; ELECTROCHEMICAL PROPERTIES; LINI0.6CO0.2MN0.2O2; CATHODE; SURFACE MODIFICATION; THERMAL-STABILITY; LITHIUM BATTERY; NCA CATHODE; PERFORMANCE; ELECTROLYTE; DEGRADATION; CARBONATE;
D O I
10.1007/s12613-024-2948-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Undoubtedly, the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery (LIB) technology. The achieved improvements in the energy density, cyclability, charging speed, reduced costs, as well as safety and stability, already contribute to the wider adoption of LIBs, which extends nowadays beyond mobile electronics, power tools, and electric vehicles, to the new range of applications, including grid storage solutions. With numerous published papers and broad reviews already available on the subject of Ni-rich oxides, this review focuses more on the most recent progress and new ideas presented in the literature references. The covered topics include doping and composition optimization, advanced coating, concentration gradient and single crystal materials, as well as innovations concerning new electrolytes and their modification, with the application of Ni-rich cathodes in solid-state batteries also discussed. Related cathode materials are briefly mentioned, with the high-entropy approach and zero-strain concept presented as well. A critical overview of the still unresolved issues is given, with perspectives on the further directions of studies and the expected gains provided.
引用
收藏
页码:2345 / 2367
页数:23
相关论文
共 194 条
[1]   Cobalt-Free High-Capacity Ni-Rich Layered Li[Ni0.9Mn0.1]O2 Cathode [J].
Aishova, Assylzat ;
Park, Geon-Tae ;
Yoon, Chong S. ;
Sun, Yang-Kook .
ADVANCED ENERGY MATERIALS, 2020, 10 (04)
[2]   Understanding the Capacity Loss in LiNi0.5Mn1.5O4-Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures [J].
Aktekin, Burak ;
Lacey, Matthew J. ;
Nordh, Tim ;
Younesi, Reza ;
Tengstedt, Carl ;
Zipprich, Wolfgang ;
Brandell, Daniel ;
Edstrom, Kristina .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (21) :11234-11248
[3]   Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material [J].
Ammundsen, B ;
Paulsen, J ;
Davidson, I ;
Liu, RS ;
Shen, CH ;
Chen, JM ;
Jang, LY ;
Lee, JF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (04) :A431-A436
[4]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[5]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[6]   Structure and Electrochemical Performance of LiNi0.8Co0.15Al0.05O2 Cathodes Before and After Treatment with Co3(PO4)2 or AlPO4 by in situ Chemical Method [J].
Bak, Yu-Rim ;
Chung, Youngmin ;
Ju, Jeong-Hun ;
Hwang, Moon-Jin ;
Lee, Youngil ;
Ryu, Kwang-Sun .
JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2011, 14 (04) :203-207
[7]   Theoretical Insights into High-Entropy Ni-Rich Layered Oxide Cathodes for Low-Strain Li-Ion Batteries [J].
Bano, Amreen ;
Noked, Malachi ;
Major, Dan Thomas .
CHEMISTRY OF MATERIALS, 2023, 35 (20) :8426-8439
[8]   Triphenylphosphine Oxide as Highly Effective Electrolyte Additive for Graphite/NMC811 Lithium Ion Cells [J].
Beltrop, Kolja ;
Klein, Sven ;
Noelle, Roman ;
Wilken, Andrea ;
Lee, Juhyon J. ;
Koester, Thomas K-J. ;
Reiter, Jakub ;
Tao, Liang ;
Liang, Chengdu ;
Winter, Martin ;
Qi, Xin ;
Placke, Tobias .
CHEMISTRY OF MATERIALS, 2018, 30 (08) :2726-2741
[9]   Layered Cathode Materials for Lithium-lon Batteries: Review of Computational Studies on LiNi1-x-yCoxMnyO2 and LiNi1-x-yCoxAlyO2 [J].
Chakraborty, Arup ;
Kunnikuruvan, Sooraj ;
Kumar, Sandeep ;
Markovsky, Boris ;
Aurbach, Doron ;
Dixit, Mudit ;
Major, Dan Thomas .
CHEMISTRY OF MATERIALS, 2020, 32 (03) :915-952
[10]   Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide [J].
Chang, CC ;
Kim, JY ;
Kumta, PN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (05) :1722-1729