Effect of Coal Spontaneous Combustion Gases on the Laminar Burning Velocity of the CH4/Air Premixed Flame

被引:0
|
作者
Tian, Fuchao [1 ,2 ]
Liang, Yuntao [2 ]
Luo, Mengmeng [3 ]
Wang, Kai [3 ]
Zeng, Wen [3 ]
Liu, Yu [1 ,3 ]
机构
[1] Shenyang Res Inst, State Key Lab Coal Mine Disaster Prevent & Control, China Coal Technol & Engn Grp, Shenyang 113122, Liaoning, Peoples R China
[2] China Coal Res Inst, Beijing 100013, Peoples R China
[3] Shenyang Aerosp Univ, Liaoning Key Lab Adv Test Technol Aerosp Prop Syst, Shenyang 110136, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
coal spontaneous combustion (CSC) gases; laminar burningvelocity (LBV); CH4; constant volumechamber (CVC); active radical; EXPLOSION CHARACTERISTICS; METHANE; TEMPERATURE; PRESSURE; HYDROCARBON; SIMULATION; BEHAVIOR;
D O I
10.1021/acs.chas.4c00054
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
In order to investigate the effect of coal spontaneous combustion (CSC) gases such as CO, C2H4, C2H6, C3H8, C2H2, and H-2 on the laminar burning velocity (LBV) of the CH4/air premixed flame, a constant volume chamber and a high-speed camera were used to measure the LBV of a 90% (in vol) CH4 and 10% CSC gas mixed fuel at an initial temperature of 300 K and over a wide equivalence ratio range from 0.7 to 1.3. Results show that the addition of all the CSC gases increases the LBV of CH4. Among all CSC gases, the CH4/C2H2 mixed fuel has the highest LBV, and the CH4/CO mixed fuel has the lowest LBV. With the addition of three typical stages of CSC gases, the LBV of CH4 was significantly enhanced. Based on the reaction path, mole fraction, and rate of production analysis, it is found that the addition of CSC gases in Stage 2 can increase the concentration of C2H5 and the consumption rate in the CH3-C2H6-C2H5 path, which is different from Stages 1 and 3. In addition, all the concentrations of H, O, and OH free radicals increase with the addition of three typical stages of CSC gases.
引用
收藏
页码:526 / 539
页数:14
相关论文
共 50 条
  • [21] HDMR correlations for the laminar burning velocity of premixed CH4/H2/O2/N2 mixtures
    Zhao, Zhenlong
    Chen, Zheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (01) : 691 - 697
  • [22] Effects of hydrogen and steam addition on laminar burning velocity of methane-air premixed flame: Experimental and numerical analysis
    Boushaki, T.
    Dhue, Y.
    Selle, L.
    Ferret, B.
    Poinsot, T.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (11) : 9412 - 9422
  • [23] Experimental and modelling study on the laminar burning velocity correlation of CH4 flames diluted by different diluents
    Han, Xinlu
    Ling, Zhongqian
    Zhang, Guangxue
    Yuan, Dingkun
    Xu, Jiangrong
    FUEL, 2024, 370
  • [24] Effect of DME addition on turbulent flame structure in lean premixed CH4/ DME/air mixtures
    Lin, Wenjun
    Wang, Jinhua
    Mao, Runze
    Zhang, Weijie
    Xia, Hao
    Zhang, Meng
    Huang, Zuohua
    FUEL, 2021, 294
  • [25] Cellular structures of laminar lean premixed H2/CH4/air polyhedral flames
    Shi, Shuguo
    Breicher, Adrian
    Trabold, Johannes
    Hartl, Sandra
    Barlow, Robert S.
    Dreizler, Andreas
    Geyer, Dirk
    APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2023, 13
  • [26] Study on premixed flame dynamics of CH4/O2/CO2 mixtures
    Zheng, Ligang
    Du, Depeng
    Wang, Jian
    Dou, Zengguo
    Wang, Xi
    Jin, Hongwang
    Wang, Yan
    FUEL, 2019, 256
  • [27] Laminar burning velocity, cellular instability, and the superadiabatic flame temperature phenomenon for NH3/syngas/air premixed flames
    Xue, Zhengquan
    Deng, Haoxin
    Yu, Chenglong
    Shi, Xunxian
    Wen, Xiaoping
    Song, Jun
    Chen, Guoyan
    Wang, Fahui
    Fan, Tao
    Chen, Jihe
    Zhao, Jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 86 : 931 - 943
  • [28] MILD combustion of a premixed NH3/air jet flame in hot coflow versus its CH4/air counterpart
    Wang, Guochang
    Liu, Xiangtao
    Li, Pengfei
    Shi, Guodong
    Cai, Xiao
    Liu, Zhaohui
    Mi, Jianchun
    FUEL, 2024, 355
  • [29] Adiabatic laminar burning velocities of CH4 + H2 + air flames at low pressures
    Konnov, A. A.
    Riemeijer, R.
    de Goey, L. P. H.
    FUEL, 2010, 89 (07) : 1392 - 1396
  • [30] Explosive characterization of the pipe with Tesla valves for premixed CH4/ CO/Air
    Yuan, Zhihan
    Wen, Xiaoping
    Zhang, Sumei
    Diao, Shoutong
    Guo, Zhidong
    Wang, Mingzhao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 183 : 821 - 834