Diverse responses of the changes in evapotranspiration and water yield to vegetation and climate change in the Yanhe River watershed

被引:0
|
作者
Ren, Hanyu [1 ]
Tan, Kai [1 ]
Zhang, Geyu [1 ]
Wang, Zhipeng [1 ]
Shi, Haijing [2 ]
Wen, Zhongming [1 ]
Liu, Yangyang [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Grassland Agr, Xinong Rd 22, Yangling 712100, Peoples R China
[2] Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess Pl, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Eagleson's Ecohydrological model; Climatic factor; Vegetation greening; Evapotranspiration; Water yield; LOESS PLATEAU; SOIL; REGION; CHINA; TRENDS; BASIN; AFFORESTATION; FORESTATION; EVAPORATION; STREAMFLOW;
D O I
10.1016/j.ecolind.2024.112750
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Quantifying the contribution and modes of action of climate variation and vegetation greening to evapotranspiration (ET) and water yield (WY) in the growing season of the Yanhe River Watershed (YHRW) is of great significance for scientifically managing the ecosystem in water-scarce areas. This study simulated the ET of YHRW based on the Eagleson model and analyzed the contribution, direct and indirect effects of climate variables (including precipitation (Pre), temperature (Tem), radiation (RN), relative humidity (RH), wind speed (Wind)) and vegetation on the ET and WY changes during three time periods of YHRW. The results suggested the ET in the YHRW mainly showed a downward trend from 1982 to 1999, and it turned into an increasing trend after 1999. From 1982 to 2018, ET showed an overall upward trend (2.02 mm.year(-1)), while WY in three different study periods mainly showed a decreasing trend. Spatially, RN, Tem, and Wind were the drivers controlling ET and WY changes from 1982 to 1999. After 1999, LAI was the main controller in ET changes, while climate factors were the main contributors to WY changes. During the 1982-2018 research period, vegetation had the greatest impact on regional ET changes, while Pre dominated the WY changes. The effects of climate variation and vegetation greening on ET and WY are complex and non-independent. Tem and RH are key mediations of ET variation, while Tem and RH are key mediating factors in WY variation. We emphasize the spatial heterogeneity in water budget changes during the vegetation growth period of YHRW at different time periods, especially after large-scale vegetation greening. This finding should be considered in the planning of sustainable development in water-scarce areas in the future to make the local eco-hydrological effect the best.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Response of Runoff and Sediment Yield from Climate Change in the Yanhe Watershed, China
    Ren, Zongping
    Feng, Zhaohong
    Li, Peng
    Wang, Dan
    Cheng, Shengdong
    Gong, Junfu
    JOURNAL OF COASTAL RESEARCH, 2017, : 30 - 35
  • [2] Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin
    Xu, Shiqin
    Yu, Zhongbo
    Yang, Chuanguo
    Ji, Xibin
    Zhang, Ke
    AGRICULTURAL AND FOREST METEOROLOGY, 2018, 263 : 118 - 129
  • [3] Modeling streamflow and sediment responses to climate change and human activities in the Yanhe River, China
    Wu, Jingwen
    Miao, Chiyuan
    Yang, Tiantian
    Duan, Qingyun
    Zhang, Xiaoming
    HYDROLOGY RESEARCH, 2018, 49 (01): : 150 - 162
  • [4] Responses of the Yellow River basin vegetation: climate change
    Li, Yang
    Xie, Zhixiang
    Qin, Yaochen
    Zheng, Zhicheng
    INTERNATIONAL JOURNAL OF CLIMATE CHANGE STRATEGIES AND MANAGEMENT, 2019, 11 (04) : 483 - 498
  • [5] Responses of streamflow to climate variability and human activities in the Yanhe watershed, China
    Wang, Jiping
    Shi, Chen
    Cheng, Fu
    Yang, Wenbin
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2017, 23 (08): : 1955 - 1967
  • [6] Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China
    Bai, Peng
    Liu, Xiaomang
    Zhang, Yongqiang
    Liu, Changming
    WATER RESOURCES RESEARCH, 2020, 56 (10)
  • [7] Discriminating the impacts of vegetation greening and climate change on the changes in evapotranspiration and transpiration fraction over the Yellow River Basin
    Liu, Yangyang
    Lin, Ziqi
    Wang, Zijun
    Chen, Xu
    Han, Peidong
    Wang, Bo
    Wang, Zhenqian
    Wen, Zhongming
    Shi, Haijing
    Zhang, Zhixin
    Zhang, Wei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 904
  • [8] The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China
    Zhao, Fubo
    Ma, Shuai
    Wu, Yiping
    Qiu, Linjing
    Wang, Wenke
    Lian, Yanqing
    Chen, Ji
    Sivakumar, Bellie
    AGRICULTURAL AND FOREST METEOROLOGY, 2022, 316
  • [9] Climate Change and Vegetation Greening Jointly Promote the Increase in Evapotranspiration in the Jing River Basin
    Yao, Luoyi
    Wu, Rong
    Wang, Zijun
    Xue, Tingyi
    Liu, Yangyang
    Hu, Ercha
    Wen, Zhongming
    Shi, Haijing
    Yang, Jiaqi
    Han, Peidong
    Zhao, Yinghan
    Hu, Jingyao
    AGRONOMY-BASEL, 2024, 14 (09):
  • [10] Responses of Water Use Efficiency to climate change in evapotranspiration and transpiration ecosystems
    An, Xiang
    ECOLOGICAL INDICATORS, 2022, 141