Crop Classification and Yield Prediction Using Robust Machine Learning Models for Agricultural Sustainability

被引:0
|
作者
Badshah, Abid [1 ]
Alkazemi, Basem Yousef [2 ]
Din, Fakhrud [1 ]
Zamli, Kamal Z. [3 ,4 ]
Haris, Muhammad [4 ]
机构
[1] Univ Malakand, Dept Comp Sci & IT, Fac Informat Technol IT, Chakdara 18800, Khyber Pakhtunk, Pakistan
[2] Umm Al Qura Univ, Coll Comp, Dept Software Engn, Mecca 24382, Saudi Arabia
[3] Univ Malaysia Pahang Al Sultan Abdullah UMPSA, Fac Comp, Kuantan 26600, Pahang, Malaysia
[4] Univ Airlangga, Fac Sci & Technol, C Campus JI Dr H Soekamo, Surabaya 60115, Indonesia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Crops; Machine learning; Biological system modeling; Predictive models; Data models; Soil; Mathematical models; Production; Agriculture; Accuracy; Agricultural planning; crop recommendation; crop yield forecasting; explainable AI; K-fold cross-validation; machine learning;
D O I
10.1109/ACCESS.2024.3486653
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Agriculture is pivotal for the economy of a country as it is a major source of food, employment and raw materials. However, challenges such as diseases, soil degradation, and water scarcity persist. Technology adoption can address these issues, improving production and quality. Machine learning, a subset of Artificial Intelligence (AI), enables prediction, classification, and automation in agriculture. It optimizes irrigation, fertilization, and crop selection, aiding decision-making for food security and crop management. This study proposes two robust machine learning architectures for classification and regression based on distinct datasets. Firstly, we delve into a crop recommendation dataset obtained from Kaggle, consisting of various input attributes such as the pH of the soil, temperature, humidity, and nutrient levels. Leveraging machine learning classification techniques such as Extra Tree Classifier (ETC), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbour (KNN), Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM), we suggest twenty-two different crops founded on these inputs. Through the use of K-fold cross-validation, Explainable AI (XAI) and feature engineering, we identify the best-performing model, with Random Forest coming out on top scoring an accuracy of 99.7% with precision, recall, F1 score, and confusion matrix. Secondly, we investigate wheat yield prediction data snagged from the World Bank and Food and Agriculture Organization (FAO), covering the years 1992-2013 for Pakistan. Using Multivariate Imputation by Chained Equations (MICE) to tackle data restrictions, we gauge wheat production for 2014-2024 and forecast the 2025 yield using machine learning regression models. Once again, using hyper parameter tuning with K-fold cross-validation, Support Vector Regressor (SVR) stands out as the top-performing model, achieving an accuracy of 99.9% with R-2 Score. Transparency and confidence in agricultural decision-making are increased when machine learning decisions are made comprehensible using Explainable AI (XAI) approaches. Two widely used XAI approaches, namely Feature Importance and Local Interpretable Model-Agnostic Explanations (LIME) are used to interpret and explain outcomes of the proposed models. The study can increase agricultural productivity, minimize risks, enhance food security, and promote more environmentally friendly farming approaches.
引用
收藏
页码:162799 / 162813
页数:15
相关论文
共 50 条
  • [21] Bitter Melon Crop Yield Prediction using Machine Learning Algorithm
    Villanueva, Marizel B.
    Salenga, Ma. Louella M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 1 - 6
  • [22] Statistical and machine learning models for location-specific crop yield prediction using weather indices
    Ajith, S.
    Debnath, Manoj Kanti
    Karthik, R.
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2024, 68 (12) : 2453 - 2475
  • [23] Early crop yield prediction for agricultural drought monitoring using drought indices, remote sensing, and machine learning techniques
    Pandya, Parthsarthi
    Gontia, Narendra Kumar
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (12) : 4729 - 4746
  • [24] Advanced machine learning models for robust prediction of water quality index and classification
    Elmotawakkil, Abdessamad
    Enneya, Nourddine
    Bhagat, Suraj Kumar
    Ouda, Mohamed Mohamed
    Kumar, Vikram
    JOURNAL OF HYDROINFORMATICS, 2025, 27 (02) : 299 - 319
  • [25] Wheat Crop Field and Yield Prediction using Remote Sensing and Machine Learning
    Ayub, Maheen
    Khan, Najeed Ahmed
    Haider, Rana Zeeshan
    PROCEEDINGS OF 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (ICAI 2022), 2022, : 158 - 164
  • [26] Crop yield prediction using machine learning: An extensive and systematic literature review
    Shawon, Sarowar Morshed
    Ema, Falguny Barua
    Mahi, Asura Khanom
    Niha, Fahima Lokman
    Zubair, H. T.
    SMART AGRICULTURAL TECHNOLOGY, 2025, 10
  • [27] Intelligent Crop Recommender System for Yield Prediction Using Machine Learning Strategy
    Maheswary A.
    Nagendram S.
    Kiran K.U.
    Ahammad S.H.
    Priya P.P.
    Hossain M.A.
    Rashed A.N.Z.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (04) : 979 - 987
  • [28] Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models
    Taghizadeh-Mehrjardi, Ruhollah
    Nabiollahi, Kamal
    Rasoli, Leila
    Kerry, Ruth
    Scholten, Thomas
    AGRONOMY-BASEL, 2020, 10 (04):
  • [29] Using Active Learning to Develop Machine Learning Models for Reaction Yield Prediction
    Viet Johansson, Simon
    Gummesson Svensson, Hampus
    Bjerrum, Esben
    Schliep, Alexander
    Haghir Chehreghani, Morteza
    Tyrchan, Christian
    Engkvist, Ola
    MOLECULAR INFORMATICS, 2022, 41 (12)
  • [30] Crop classification and prediction based on soil nutrition using machine learning methods
    Swathi T.
    Sudha S.
    International Journal of Information Technology, 2023, 15 (6) : 2951 - 2960