Mesoscale eddies inhibit intensification of the Subantarctic Front under global warming

被引:1
作者
Li, Dapeng [1 ,2 ]
Jing, Zhao [1 ,2 ,3 ]
Cai, Wenju [1 ,2 ,3 ]
Zhang, Zhengguang [1 ,2 ]
Shi, Jiuxin [1 ,2 ]
Ma, Xiaohui [1 ,2 ]
Gan, Bolan [1 ,2 ]
Yang, Haiyuan [1 ,2 ]
Chen, Zhaohui [1 ,2 ]
Wu, Lixin [1 ,2 ,3 ]
机构
[1] Ocean Univ China, Affiliat Frontiers Sci Ctr Deep Ocean Multispheres, Qingdao, Peoples R China
[2] Ocean Univ China, Key Lab Phys Oceanog, Qingdao, Peoples R China
[3] Affiliat Laoshan Lab, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
mesoscale oceanic eddies; Subantarctic Front; high resolution climate simulations; global warming; MERIDIONAL OVERTURNING CIRCULATION; CIRCUMPOLAR CURRENT SOUTH; OCEAN HEAT; CLIMATE; MODEL; TRANSPORT; VARIABILITY; RESOLUTION; VENTILATION; HIERARCHY;
D O I
10.1088/1748-9326/ad8173
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Oceanic mesoscale eddies are important dynamical processes in the Southern Ocean. Using high-resolution (similar to 0.1 degrees for the ocean) Community Earth System Model (CESM-HR) simulations under a high-carbon emission scenario, we investigate the role of mesoscale eddies in regulating the response of the Subantarctic Front (SAF) to global warming. The CESM-HR simulates more realistic oceanic fronts and mesoscale eddies in the Southern Ocean than a coarse-resolution (similar to 1 degrees for the ocean) CESM. Under global warming, the SAF is projected to intensify. The mean flow temperature advection intensifies the front, whereas the mesoscale-eddy-induced temperature advection and atmospheric dampening play primary (similar to 67%) and secondary (similar to 28%) roles in counteracting the effect of mean flow temperature advection. Our study suggests the importance of mesoscale eddies on inhibiting the SAF intensification under global warming and necessity of mesoscale-eddy-resolving simulations for faithful projection of future climate changes in the Southern Ocean.
引用
收藏
页数:10
相关论文
共 76 条
[1]   Enhancement of Mesoscale Eddy Stirring at Steering Levels in the Southern Ocean [J].
Abernathey, Ryan ;
Marshall, John ;
Mazloff, Matt ;
Shuckburgh, Emily .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2010, 40 (01) :170-184
[2]   The benefits of high-resolution models in simulating the Kuroshio Extension and its long-term changes [J].
An, Bo ;
Yu, Yongqiang ;
Hewitt, Helene ;
Wu, Peili ;
Furtado, Kalli ;
Liu, Hailong ;
Lin, Pengfei ;
Luan, Yihua ;
Chen, Kangjun .
CLIMATE DYNAMICS, 2023, 61 (11-12) :5407-5427
[3]   CAS FGOALS-f3-H Dataset for the High-Resolution Model Intercomparison Project (HighResMIP) Tier 2 [J].
An, Bo ;
Yu, Yongqiang ;
Bao, Qing ;
He, Bian ;
Li, Jinxiao ;
Luan, Yihua ;
Chen, Kangjun ;
Zheng, Weipeng .
ADVANCES IN ATMOSPHERIC SCIENCES, 2022, 39 (11) :1873-1884
[4]  
Armour KC, 2016, NAT GEOSCI, V9, P549, DOI [10.1038/NGEO2731, 10.1038/ngeo2731]
[5]   Impact of ocean model resolution on understanding the delayed warming of the Southern Ocean [J].
Bilgen, Simge, I ;
Kirtman, Ben P. .
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (11)
[6]   Mixed layer instabilities and restratification [J].
Boccaletti, Giulio ;
Ferrari, Raffaele ;
Fox-Kemper, Baylor .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (09) :2228-2250
[7]   Southern Ocean warming and its climatic impacts [J].
Cai, Wenju ;
Gao, Libao ;
Luo, Yiyong ;
Li, Xichen ;
Zheng, Xiaotong ;
Zhang, Xuebin ;
Cheng, Xuhua ;
Jia, Fan ;
Purich, Ariaan ;
Santoso, Agus ;
Du, Yan ;
Holland, David M. ;
Shi, Jia-Rui ;
Xiang, Baoqiang ;
Xie, Shang-Ping .
SCIENCE BULLETIN, 2023, 68 (09) :946-960
[8]  
Chang P., 2021, iHESPs Global, Coupled CESM Climate Simulations
[9]  
Chang P, 2020, J ADV MODEL EARTH SY, V12, DOI [10.26713/jims.v12i1.1217, 10.1029/2020MS002298]
[10]   Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate [J].
Chapman, Christopher C. ;
Lea, Mary-Anne ;
Meyer, Amelie ;
Sallee, Jean-Baptiste ;
Hindell, Mark .
NATURE CLIMATE CHANGE, 2020, 10 (03) :209-219