Physical reservoir computing: a tutorial

被引:0
|
作者
Stepney, Susan [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, England
基金
英国工程与自然科学研究理事会;
关键词
Reservoir computing; Physical computing; Echo State Network; NETWORKS; CHAOS;
D O I
10.1007/s11047-024-09997-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This tutorial covers physical reservoir computing from a computer science perspective. It first defines what it means for a physical system to compute, rather than merely evolve under the laws of physics. It describes the underlying computational model, the Echo State Network (ESN), and also some variants designed to make physical implementation easier. It explains why the ESN model is particularly suitable for direct physical implementation. It then discusses the issues around choosing a suitable material substrate, and interfacing the inputs and outputs. It describes how to characterise a physical reservoir in terms of benchmark tasks, and task-independent measures. It covers optimising configuration parameters, exploring the space of potential configurations, and simulating the physical reservoir. It ends with a look at the future of physical reservoir computing as devices get more powerful, and are integrated into larger systems.
引用
收藏
页码:665 / 685
页数:21
相关论文
共 50 条
  • [11] Differentiable reservoir computing
    Grigoryeva, Lyudmila
    Ortega, Juan-Pablo
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [12] Reservoir Computing Trends
    Lukoševičius, Mantas
    Jaeger, Herbert
    Schrauwen, Benjamin
    KI - Kunstliche Intelligenz, 2012, 26 (04): : 365 - 371
  • [13] Multifunctional reservoir computing
    Du, Yao
    Luo, Haibo
    Guo, Jianmin
    Xiao, Jinghua
    Yu, Yizhen
    Wang, Xingang
    PHYSICAL REVIEW E, 2025, 111 (03)
  • [14] Self-Organizing Multiple Readouts for Reservoir Computing
    Tanaka, Yuichiro
    Tamukoh, Hakaru
    IEEE ACCESS, 2023, 11 : 138839 - 138849
  • [15] Leveraging plant physiological dynamics using physical reservoir computing
    Pieters, Olivier
    De Swaef, Tom
    Stock, Michiel
    Wyffels, Francis
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [16] Locomotion Without a Brain: Physical Reservoir Computing in Tensegrity Structures
    Caluwaerts, K.
    D'Haene, M.
    Verstraeten, D.
    Schrauwen, B.
    ARTIFICIAL LIFE, 2013, 19 (01) : 35 - 66
  • [17] Photonic Physical Reservoir Computing with Tunable Relaxation Time Constant
    Yamazaki, Yutaro
    Kinoshita, Kentaro
    ADVANCED SCIENCE, 2024, 11 (03)
  • [18] Ovonic Threshold Switching for Ultralow Energy Physical Reservoir Computing
    Guo, Y. Y.
    Degraeve, R.
    Ravsher, T.
    Garbin, D.
    Roussel, P.
    Kar, G. S.
    Bury, E.
    Linten, D.
    Verbauwhede, I.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2025, 72 (03) : 1112 - 1117
  • [19] An Inkjet-Printed Artificial Neuron for Physical Reservoir Computing
    Gardner, Steven D.
    Haider, Mohammad R.
    IEEE Journal on Flexible Electronics, 2022, 1 (03): : 185 - 193
  • [20] Risk Bounds for Reservoir Computing
    Gonon, Lukas
    Grigoryeva, Lyudmila
    Ortega, Juan-Pablo
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21