Quantum enhanced mechanical rotation sensing using wavefront photonic gears

被引:0
|
作者
Yesharim, Ofir [1 ]
Tshuva, Guy [1 ]
Arie, Ady [1 ]
机构
[1] Tel Aviv Univ, Iby & Aladar Fleischman Fac Engn, Sch Elect Engn, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
STATES;
D O I
10.1063/5.0231506
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum metrology leverages quantum correlations for enhanced parameter estimation. Recently, structured light enabled increased resolution and sensitivity in quantum metrology systems. However, lossy and complex setups impacting photon flux hinder true quantum advantage while using high dimensional structured light. We introduce a straightforward mechanical rotation quantum sensing mechanism, employing high-dimensional structured light and use it with a high-flux (45 000 coincidence counts per second) N00N state source with N = 2. The system utilizes two opposite spiral phase plates with topological charge of up to & ell; = 16 that converts mechanical rotation into wavefront phase shifts and exhibit a 16-fold enhanced super-resolution and 25-fold enhanced sensitivity between different topological charges, while retaining the acquisition times, and with negligible change in coincidence count. Furthermore, the high efficiency together with the high photon flux enables detection of mechanical angular acceleration in real-time. Our approach paves the way for highly sensitive quantum measurements, applicable to various interferometric schemes.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Wavefront sensing using a photonic lantern
    Corrigan, Mark
    Harris, Robert J.
    Thomson, Robert R.
    MacLachlan, David G.
    Allington-Smith, Jeremy
    Myers, Richard
    Morris, Tim
    ADAPTIVE OPTICS SYSTEMS V, 2016, 9909
  • [2] Wavefront sensing using a liquid-filled photonic crystal fiber
    Valente, Denise
    Rativa, Diego
    Vohnsen, Brian
    OPTICS EXPRESS, 2015, 23 (10): : 13005 - 13014
  • [3] Optical sensing by using photonic quantum ring lasers and resonance-enhanced photodetectors
    Park, BH
    Baek, SD
    Kim, JY
    Bae, J
    Han, H
    Kwon, O
    OPTICAL ENGINEERING, 2002, 41 (06) : 1339 - 1345
  • [4] Wavefront Sensing and Correction via Compressive Sensing and Advanced Photonic Devices
    Khallaf, Haitham S.
    Amini, Aydin
    Orth, Antony
    Pitts, Oliver
    Kleiman, Rafael
    Hranilovic, Steve
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 1753 - 1758
  • [5] Sensing intruders using entanglement: a photonic quantum fence
    Humble, Travis S.
    Bennink, Ryan S.
    Grice, Warren P.
    Owens, Israel J.
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [6] Quantum Enhanced Sensing using Gaussian Quantum States
    Kundu, Neel Kanth
    Mckay, Matthew R.
    Balaji, Bhashyam
    2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS, 2023,
  • [7] Wavefront measurement by using photonic crystals
    Tong, H
    McAulay, AD
    ENABLING PHOTONIC TECHNOLOGIES FOR AEROSPACE APPLICATIONS VI, 2004, 5435 : 97 - 101
  • [8] Quantum gears: a simple mechanical system in the quantum regime
    MacKinnon, A
    NANOTECHNOLOGY, 2002, 13 (05) : 678 - 681
  • [9] Zonal wavefront sensing with enhanced spatial resolution
    Pathak, Biswajit
    Boruah, Bosanta R.
    OPTICS LETTERS, 2016, 41 (23) : 5600 - 5603
  • [10] Advances in photonic quantum sensing
    Pirandola, S.
    Bardhan, B. R.
    Gehring, T.
    Weedbrook, C.
    Lloyd, S.
    NATURE PHOTONICS, 2018, 12 (12) : 724 - 733