Multi-interest sequential recommendation with contrastive learning and temporal analysis

被引:0
作者
Ma, Xiaowen [1 ]
Zhou, Qiang [1 ]
Li, Yongjun [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp, Xian 710072, Shaanxi, Peoples R China
关键词
Sequential recommendation; Multi-interest; User's short-term interest; Contrastive learning;
D O I
10.1016/j.knosys.2024.112657
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sequential recommendation systems aim to forecast the subsequent item of interest to users by analyzing their historical behaviors. While existing approaches, which employ attention mechanisms, have significantly advanced by capturing users' multiple interests, they encounter two primary challenges. Firstly, they often fail to effectively capture the transient shifts in users' interests across a sequence of items and neglect the interdependencies among these items, leading to a misalignment between the identified and actual interests. Secondly, conventional multi-interest models struggle to ensure that the identified interests are distinct, which results in overly similar interests that may not adequately satisfy user requirements. To address these issues, we propose a novel multi-interest recommendation method, which models the temporal features and user's preference features from the user level. In order to capture short-term variations in interest, we introduce a time period module to encode the behavioral intervals between items and capture the periodicity of users clicking on similar items by extracting temporal information. In addition, we integrate similar types of items into the interest subgraph through preference feature extraction to capture users' short-term changes in relevance term interests, and incorporate contrastive learning to enhance the differences between the captured interests. Extensive experiments conducted on two datasets Amazon Books and Taobao show that the model outperforms current state-of-the-art methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Equivariant Contrastive Learning for Sequential Recommendation
    Zhou, Peilin
    Gao, Jingqi
    Xie, Yueqi
    Ye, Qichen
    Hua, Yining
    Kim, Jaeboum
    Wang, Shoujin
    Kim, Sunghun
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 129 - 140
  • [22] Intent Contrastive Learning for Sequential Recommendation
    Chen, Yongjun
    Liu, Zhiwei
    Li, Jia
    McAuley, Julian
    Xiong, Caiming
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2172 - 2182
  • [23] Contrastive Learning for Sequential Recommendation
    Xie, Xu
    Sun, Fei
    Liu, Zhaoyang
    Wu, Shiwen
    Gao, Jinyang
    Zhang, Jiandong
    Ding, Bolin
    Cui, Bin
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1259 - 1273
  • [24] When Multi-Level Meets Multi-Interest: A Multi-Grained Neural Model for Sequential Recommendation
    Tian, Yu
    Chang, Jianxin
    Niu, Yanan
    Song, Yang
    Li, Chenliang
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1632 - 1641
  • [25] Contrastive learning with adversarial masking for sequential recommendation
    Xiang, Rongzheng
    Huang, Jiajin
    Yang, Jian
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2025, 71
  • [26] Contrastive Learning with Bidirectional Transformers for Sequential Recommendation
    Du, Hanwen
    Shi, Hui
    Zhao, Pengpeng
    Wang, Deqing
    Sheng, Victor S.
    Liu, Yanchi
    Liu, Guanfeng
    Zhao, Lei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 396 - 405
  • [27] Temporal Contrastive Pre-Training for Sequential Recommendation
    Tian, Changxin
    Lin, Zihan
    Bian, Shuqing
    Wang, Jinpeng
    Zhao, Wayne Xin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1925 - 1934
  • [28] Contrastive Learning with Frequency Domain for Sequential Recommendation
    Zhang, Yichi
    Yin, Guisheng
    Dong, Yuxin
    Zhang, Liguo
    APPLIED SOFT COMPUTING, 2023, 144
  • [29] Explanation Guided Contrastive Learning for Sequential Recommendation
    Wang, Lei
    Lim, Ee-Peng
    Liu, Zhiwei
    Zhao, Tianxiang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2017 - 2027
  • [30] Multi-interest Sequence Modeling for Recommendation with Causal Embedding
    Sun, Caiqi
    Lu, Penghao
    Cheng, Lei
    Cao, Zhenfu
    Dong, Xiaolei
    Tang, Yili
    Zhou, Jun
    Mo, Linjian
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 406 - 414