共 30 条
[1]
Aberkane S., Elarbi-Boudihir M., Deep Reinforcement Learning-based anomaly detection for Video Surveillance, Informatica, 46, 2, (2022)
[2]
Baptista M., Henriques E. M. P., de Medeiros I. P., Malere J. P., Nascimento C. L., Prendinger H., Remaining useful life estimation in aeronautics: Combining data-driven and Kalman filtering, Reliability Engineering & System Safety, 184, pp. 228-239, (2019)
[3]
Chen Z., Li Y., Xia T., Pan E., Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy, Reliability Engineering & System Safety, 184, pp. 123-136, (2019)
[4]
Elmahallawy M., Elfouly T., Alouani A., Massoud A. M., A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction, IEEE Access, 10, pp. 119040-119070, (2022)
[5]
Esfahani Z., Salahshoor K., Farsi B., Eicker U., A New Hybrid Model for RUL Prediction through Machine Learning, Journal of Failure Analysis and Prevention, 21, 5, pp. 1596-1604, (2021)
[6]
Fan Y., Nowaczyk S., Rognvaldsson T., Transfer learning for remaining useful life prediction based on consensus self-organizing models, Reliability Engineering & System Safety, 203, (2020)
[7]
Ferreira C., Goncalves G., Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods, Journal of Manufacturing Systems, 63, pp. 550-562, (2022)
[8]
Guo L., Li N., Jia F., Lei Y., Lin J., A recurrent neural network-based health indicator for remaining useful life prediction of bearings, Neurocomputing, 240, pp. 98-109, (2017)
[9]
Kang Z., Catal C., Tekinerdogan B., Remaining Useful Life (RUL) Prediction of Equipment in Production Lines Using Artificial Neural Networks, Sensors, 21, 3, (2021)
[10]
Karim R., Hasan M., Kundu A. K., Ave A. A., LP SVM with A Novel Similarity Function Outperforms Powerful LP-QP-Kernel-SVM Considering Efficient Classification, Informatica, 47, 8, (2023)