RBL-YOLOv8: A Lightweight Multi-Scale Detection and Recognition Method for Traffic Signs

被引:0
|
作者
Guo, Shijie [1 ]
Zhao, Nannan [1 ]
Ouyang, Xinyu [1 ]
Ouyang, Yifan [2 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan 114051, Liaoning, Peoples R China
[2] Xiamen Univ Malaysia, Sch Elect Engn & Artificial Intelligence, Sepang 43900, Selangor, Malaysia
关键词
traffic sign detection; YOLOv8; multi-scale detection; shared convolution; lightweight;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To address the problems of misdetection, omission, and low accuracy in traffic sign detection and recognition, a novel method called RBL-YOLOv8 is presented by improving YOLOv8. In the feature extraction network, the RepNC-SPELAN module is used to replace the C2f module to improve the feature extraction capability and reduce the number of parameters. In the feature fusion network, fusion of largescale feature layers is added, while weighted feature fusion is used to create cross-layer connections between shallow and deep features to improve the utilisation of shallow features for better detection of small targets. A lightweight detection head is proposed to reduce the number of parameters and computational complexity of the model, while improving the localization and classification ability of the detection head. The MPDIoU loss function is used to replace CIOU, which can better accelerate the bounding box regression. The improved model is conducted experiments on the CCTSDB and TT100K datasets and compared with other algorithms, the results validate its effectiveness and superiority.
引用
收藏
页码:2180 / 2190
页数:11
相关论文
共 50 条
  • [1] Improved Lightweight YOLOv8 Model for Rice Disease Detection in Multi-Scale Scenarios
    Wang, Jinfeng
    Ma, Siyuan
    Wang, Zhentao
    Ma, Xinhua
    Yang, Chunhe
    Chen, Guoqing
    Wang, Yijia
    AGRONOMY-BASEL, 2025, 15 (02):
  • [2] LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection
    Ma, Songzhe
    Lu, Huimin
    Liu, Jie
    Zhu, Yungang
    Sang, Pengcheng
    IEEE ACCESS, 2024, 12 : 29294 - 29307
  • [3] A real-time detection method of multi-scale traffic signs based on dynamic pruning strategy
    Jiang Q.
    Rui T.
    Dai J.
    Shao F.
    Lu G.
    Wang J.
    Multimedia Tools and Applications, 2023, 82 (21) : 32519 - 32537
  • [4] A lightweight network for traffic sign recognition based on multi-scale feature and attention mechanism
    Wei, Wei
    Zhang, Lili
    Yang, Kang
    Li, Jing
    Cui, Ning
    Han, Yucheng
    Zhang, Ning
    Yang, Xudong
    Tan, Hongxin
    Wang, Kai
    HELIYON, 2024, 10 (04)
  • [5] MMW-YOLOv5: A Multi-Scale Enhanced Traffic Sign Detection Algorithm
    Wang, Tong
    Zhang, Juwei
    Ren, Bingyi
    Liu, Bo
    IEEE ACCESS, 2024, 12 : 148880 - 148892
  • [6] Research on Improved Lightweight YOLOv5s for Multi-Scale Ship Target Detection
    Zhang, Peng
    Zhu, Peiqiao
    Sun, Ze
    Ding, Jun
    Zhang, Jiale
    Dong, Junwei
    Guo, Wei
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [7] A lightweight method for small scale traffic sign detection based on YOLOv4-Tiny
    Shen, Jie
    Liao, Hengsong
    Zheng, Li
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (40) : 88387 - 88409
  • [8] Dynamic distillation based multi-scale lightweight target detection
    Kai Sun
    Danjing Li
    Multimedia Tools and Applications, 2025, 84 (12) : 10221 - 10239
  • [9] A Lightweight SE-YOLOv3 Network for Multi-Scale Object Detection in Remote Sensing Imagery
    Zhou, Lifang
    Deng, Guang
    Li, Weisheng
    Mi, Jianxun
    Lei, Bangjun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (13)
  • [10] MDP-YOLO: A LIGHTWEIGHT YOLOV5S ALGORITHM FOR MULTI-SCALE PEST DETECTION
    Yu, Jianghua
    Zhang, Bing
    ENGENHARIA AGRICOLA, 2023, 43 (04):