Optical wavefront shaping in deep tissue using photoacoustic feedback

被引:1
作者
Xia, Fei [1 ]
Leite, Ivo [2 ]
Prevedel, Robert [2 ]
Chaigne, Thomas [3 ]
机构
[1] Sorbonne Univ, Coll France, CNRS, Lab Kastler Brossel,ENS Univ PSL, 24 Rue Lhomond, F-75005 Paris, France
[2] European Mol Biol Lab, Meyerhofstr 1, D-69117 Heidelberg, Germany
[3] Aix Marseille Univ, Inst Fresnel, CNRS, Cent Med, Marseille, France
来源
JOURNAL OF PHYSICS-PHOTONICS | 2024年 / 6卷 / 04期
关键词
photoacoustics; wavefront shaping; light in complex media; SCATTERING MEDIA; FOCUSING LIGHT; RESOLUTION; AMPLITUDE; TOMOGRAPHY; TIME;
D O I
10.1088/2515-7647/ad82c1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Over the past decade, optical wavefront shaping has been developed to focus light through highly opaque scattering layers, opening new possibilities for biomedical applications. To probe light intensity deep inside soft scattering media such as biological tissues, internal guide-stars are required. Here, we give an overview of the main principles and describe in depth the use of a photoacoustic feedback signal for this purpose. We further present first principles calculations and simulations to estimate important experimental parameters, and detailed instructions on designing and conducting these experiments. Finally, we provide guidance towards selecting suitable equipment for building a typical experimental setup, paving the way for further innovative biomedical imaging and therapy applications.
引用
收藏
页数:19
相关论文
共 50 条
[41]   Arbitrary Optical Wavefront Shaping with Holographic Plasmonic Gap Waveguides [J].
Zhou, Guang Zhu ;
Chen, Bao-Jie ;
Wu, Geng-Bo ;
Qu, Shi-Wei ;
Chan, Chi Hou .
ADVANCED OPTICAL MATERIALS, 2023, 11 (20)
[42]   Disordered Optics: Exploiting Multiple Light Scattering and Wavefront Shaping for Nonconventional Optical Elements [J].
Park, Jung-Hoon ;
Park, Jongchan ;
Lee, KyeoReh ;
Park, YongKeun .
ADVANCED MATERIALS, 2020, 32 (35)
[43]   Cross-sectional imaging through scattering media by quantum-mimetic optical coherence tomography with wavefront shaping [J].
Shirai, Tomohiro ;
Friberg, Ari T. .
JOURNAL OF OPTICS, 2021, 23 (01)
[44]   An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial [J].
Strudley, Tom ;
Bruck, Roman ;
Mills, Ben ;
Muskens, Otto L. .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e207-e207
[45]   Anti-scattering optical information transmission based on iterative wavefront shaping in perturbation environment [J].
Duan, Meigang ;
Zhao, Ying ;
Huangfu, Haolan ;
Deng, Xin ;
Zuo, Haoyi ;
Luo, Shirong ;
Li, Zhensheng ;
Wang, Dequan .
RESULTS IN PHYSICS, 2023, 52
[46]   Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media [J].
Luo, Yunqi ;
Yan, Suxia ;
Li, Huanhao ;
Lai, Puxiang ;
Zheng, Yuanjin .
PHOTONICS RESEARCH, 2021, 9 (08) :B262-B278
[47]   Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping [J].
Yu, Hyeonseung ;
Jang, Jaeduck ;
Lim, Jaeguyn ;
Park, Jung-Hoon ;
Jang, Wooyoung ;
Kim, Ji-Yeun ;
Park, YongKeun .
OPTICS EXPRESS, 2014, 22 (07) :7514-7523
[48]   Diamond Based Optical Metasurfaces for Broadband Wavefront Shaping in Harsh Environment [J].
Yang, Xun ;
Wu, Bo ;
Chen, Pei-Pei ;
Xie, Yi-Yang ;
Lin, Chao-Nan ;
Zhang, Zhen-Feng ;
Dou, Wen-Jie ;
Ni, Pei-Nan ;
Shan, Chong-Xin .
LASER & PHOTONICS REVIEWS, 2024, 18 (09)
[49]   Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media [J].
Lai, Puxiang ;
Wang, Lidai ;
Tay, Jian Wei ;
Wang, Lihong V. .
NATURE PHOTONICS, 2015, 9 (02) :126-132
[50]   Complex wavefront corrections for deep tissue focusing using low coherence backscattered light [J].
Fiolka, Reto ;
Si, Ke ;
Cui, Meng .
OPTICS EXPRESS, 2012, 20 (15) :16532-16543