An Analysis of Differential Evolution Population Size

被引:3
作者
Saad, Amani [1 ]
Engelbrecht, Andries P. [2 ,3 ]
Khan, Salman A. [4 ]
机构
[1] Stellenbosch Univ, Dept Comp Sci, ZA-7600 Stellenbosch, South Africa
[2] Stellenbosch Univ, Ind Engn & Comp Sci Div, ZA-7600 Stellenbosch, South Africa
[3] Gulf Univ Sci & Technol, GUST Engn & Appl Innovat Res Ctr, West Mishref 15453, Kuwait
[4] Karachi Inst Econ & Technol, Coll Comp & Informat Sci, Karachi 75190, Pakistan
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 21期
关键词
differential evolution DE; control parameters CP; population size NP; functional analysis of variance fANOVA; ALGORITHM; OPTIMIZATION; PARAMETERS; REDUCTION;
D O I
10.3390/app14219976
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The performance of the differential evolution algorithm (DE) is known to be highly sensitive to the values assigned to its control parameters. While numerous studies of the DE control parameters do exist, these studies have limitations, particularly in the context of setting the population size regardless of problem-specific characteristics. Moreover, the complex interrelationships between DE control parameters are frequently overlooked. This paper addresses these limitations by critically analyzing the existing guidelines for setting the population size in DE and assessing their efficacy for problems of various modalities. Moreover, the relative importance and interrelationship between DE control parameters using the functional analysis of variance (fANOVA) approach are investigated. The empirical analysis uses thirty problems of varying complexities from the IEEE Congress on Evolutionary Computation (CEC) 2014 benchmark suite. The results suggest that the conventional one-size-fits-all guidelines for setting DE population size possess the possibility of overestimating initial population sizes. The analysis further explores how varying population sizes impact DE performance across different fitness landscapes, highlighting important interactions between population size and other DE control parameters. This research lays the groundwork for subsequent research on thoughtful selection of optimal population sizes for DE algorithms, facilitating the development of more efficient adaptive DE strategies.
引用
收藏
页数:34
相关论文
共 113 条
[1]   A Population Adaptation Mechanism for Differential Evolution Algorithm [J].
Aalto, Johanna ;
Lampinen, Jouni .
2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, :1514-1521
[2]   Differential evolution: A recent review based on state-of-the-art works [J].
Ahmad, Mohamad Faiz ;
Isa, Nor Ashidi Mat ;
Lim, Wei Hong ;
Ang, Koon Meng .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (05) :3831-3872
[3]   Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy [J].
Al-Dabbagh, Rawaa Dawoud ;
Neri, Ferrante ;
Idris, Norisma ;
Baba, Mohd Sapiyan .
SWARM AND EVOLUTIONARY COMPUTATION, 2018, 43 :284-311
[4]  
Ali A., 2019, P SWARM EV MEM COMP, P21
[5]   Differential evolution with preferential crossover [J].
Ali, M. M. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) :1137-1147
[6]   A differential free point generation scheme in the differential evolution algorithm [J].
Ali, M. M. ;
Fatti, L. P. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (04) :551-572
[7]   An Adaptive Multipopulation Differential Evolution With Dynamic Population Reduction [J].
Ali, Mostafa Z. ;
Awad, Noor H. ;
Suganthan, Ponnuthurai Nagaratnam ;
Reynolds, Robert G. .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (09) :2768-2779
[8]   Empirical evaluation of distributed Differential Evolution on standard benchmarks [J].
Apolloni, Javier ;
Garcia-Nieto, Jose ;
Alba, Enrique ;
Leguizamon, Guillermo .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 :351-366
[9]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[10]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281