BEW-YOLOv8: A deep learning model for multi-scene and multi-scale flood depth estimation

被引:1
作者
Liu, Bo [1 ]
Li, Yingbing [1 ]
Feng, Xiaoke [1 ]
Lian, Peige [1 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomatics, Wuhan 430079, Peoples R China
基金
国家重点研发计划;
关键词
Flood depth estimation; Object detection; Multi-scene and multi-scale; Deep learning; YOLOv8; SAR; IMAGES;
D O I
10.1016/j.jhydrol.2024.132139
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As global climate change intensifies, the frequency of extreme weather events, including urban flooding, has risen, posing a significant threat to the safety of urban areas. Efficient and precise flood depth monitoring is crucial for a dynamic understanding of disaster conditions, enabling informed decision-making and reducing the potential for significant loss of life and property. Although object detection models have shown promise in estimating flood depths and have achieved notable results, enhancements are still needed in applications across multi-scene and multi-scale. This research enhances the YOLOv8 model by integrating Bidirectional Feature Pyramid Network (BiFPN), Effective Squeeze and Excitation (EffectiveSE), and Wise-IoU (WIoU), targeting submerged cars to develop the BEW-YOLOv8 model. Testing shows that the BEW-YOLOv8 model improves Precision, Recall, F1 Score, mAP@0.5, and mAP@0.5-0.95 by 14.1%, 2.2%, 7.9%, 8.7%, and 6.3%, respectively, compared to the unmodified YOLOv8 model. Compared with other existing models, BEW-YOLOv8 achieves the best performance with less than one-tenth of the parameters. Furthermore, this study verifies that the BEWYOLOv8 model holds considerable promise for further enhancements with dataset expansions. Its precision and dependability make the BEW-YOLOv8 model well-suited for real-time flood depth assessment across multiple scenes and scales. The model's capability for real-time processing supports urgent flood response needs, offering solid technical assistance for managing urban floods and mitigating disaster risks.
引用
收藏
页数:12
相关论文
共 57 条
[1]   Integrating multi-sensor observations and rainfall-runoff inundation modeling for mapping flood extents over the Nile River basin: example from the 2020 flooding in Sudan [J].
Abdelmoneim, Hadir ;
Eldardiry, Hisham ;
Saber, Mohamed ;
Kantoush, Sameh A. ;
Moghazy, Hossam M. ;
Sumi, Tetsuya .
GEOCARTO INTERNATIONAL, 2023, 38 (01)
[2]   Stormwater management modeling and machine learning for flash flood susceptibility prediction in Wadi Qows, Saudi Arabia [J].
Alamoudi, Fahad ;
Saber, Mohamed ;
Kantoush, Sameh A. ;
Boulmaiz, Tayeb ;
Abdrabo, Karim I. ;
Abdelmoneim, Hadir ;
Sumi, Tetsuya .
HYDROLOGICAL RESEARCH LETTERS, 2023, 17 (03) :62-68
[3]   Human-centered flood mapping and intelligent routing through augmenting flood gauge data with crowdsourced street photos [J].
Alizadeh, Bahareh ;
Li, Diya ;
Hillin, Julia ;
Meyer, Michelle A. ;
Thompson, Courtney M. ;
Zhang, Zhe ;
Behzadan, Amir H. .
ADVANCED ENGINEERING INFORMATICS, 2022, 54
[4]   Simultaneous assimilation of water levels from river gauges and satellite flood maps for near-real-time flood mapping [J].
Annis, Antonio ;
Nardi, Fernando ;
Castelli, Fabio .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (04) :1019-1041
[5]  
Ba J, 2014, ACS SYM SER
[6]   Current European flood-rich period exceptional compared with past 500 years [J].
Bloeschl, Guenter ;
Kiss, Andrea ;
Viglione, Alberto ;
Barriendos, Mariano ;
Boehm, Oliver ;
Brazdil, Rudolf ;
Coeur, Denis ;
Demaree, Gaston ;
Llasat, Maria Carmen ;
Macdonald, Neil ;
Retso, Dag ;
Roald, Lars ;
Schmocker-Fackel, Petra ;
Amorim, Ines ;
Belinova, Monika ;
Benito, Gerardo ;
Bertolin, Chiara ;
Camuffo, Dario ;
Cornel, Daniel ;
Doktor, Radoslaw ;
Elleder, Libor ;
Enzi, Silvia ;
Garcia, Joao Carlos ;
Glaser, Ruediger ;
Hall, Julia ;
Haslinger, Klaus ;
Hofstaetter, Michael ;
Komma, Juergen ;
Limanowka, Danuta ;
Lun, David ;
Panin, Andrei ;
Parajka, Juraj ;
Petric, Hrvoje ;
Rodrigo, Fernando S. ;
Rohr, Christian ;
Schoenbein, Johannes ;
Schulte, Lothar ;
Silva, Luis Pedro ;
Toonen, Willem H. J. ;
Valent, Peter ;
Waser, Juergen ;
Wetter, Oliver .
NATURE, 2020, 583 (7817) :560-+
[7]   Water level prediction from social media images with a multi-task ranking approach [J].
Chaudhary, P. ;
D'Aronco, S. ;
Leitao, J. P. ;
Schindler, K. ;
Wegner, J. D. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 167 :252-262
[8]   Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City [J].
Cheng, Tao ;
Xu, Zongxue ;
Hong, Siyang ;
Song, Sulin .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
[9]  
China E.M.D.O., 2022, Youth Journalist
[10]   Flood depth estimation by means of high-resolution SAR images and lidar data [J].
Cian, Fabio ;
Marconcini, Mattia ;
Ceccato, Pietro ;
Giupponi, Carlo .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2018, 18 (11) :3063-3084