In situ non-destructive measurement of Josephson junction resistance using fritting contact technique

被引:0
作者
Du, Lei [1 ,2 ,3 ]
Tao, Hao-Ran [1 ,2 ,3 ]
Guo, Liang-Liang [1 ,2 ,3 ]
Zhang, Hai-Feng [1 ,2 ,3 ]
Chen, Yong [1 ,2 ,3 ]
Tian, Xin [4 ]
Zhang, Chi [4 ]
Jia, Zhi-Long [4 ]
Duan, Peng [1 ,2 ,3 ]
Guo, Guo-Ping [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[4] Origin Quantum Comp Technol Hefei Co Ltd, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
non-destructive; fritting contact; qubit frequency; Josephson junction resistance;
D O I
10.1088/1674-1056/ad73b6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conventional four-probe methods for measuring the resistance of Josephson junctions can damage superconducting thin films, making them unsuitable for frequency measurements of superconducting qubits. In this study, we present a custom probe station measurement system that employs the fritting contact technique to achieve in situ, non-destructive measurements of Josephson junction resistance. Our experimental results demonstrate that this method allows for accurate prediction of qubit frequency with an error margin of 17.2 MHz. Moreover, the fritting contact technique does not significantly affect qubit coherence time or the integrity of the superconducting film, confirming its non-destructive nature. This innovative approach provides a dependable foundation for frequency tuning and addressing frequency collision issues, thus supporting the advancement and practical deployment of superconducting quantum computing.
引用
收藏
页数:5
相关论文
共 38 条
  • [1] TUNNELING BETWEEN SUPERCONDUCTORS
    AMBEGAOKAR, V
    BARATOFF, A
    [J]. PHYSICAL REVIEW LETTERS, 1963, 10 (11) : 486 - &
  • [2] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [3] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
    Blais, A
    Huang, RS
    Wallraff, A
    Girvin, SM
    Schoelkopf, RJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062320 - 1
  • [4] Multilayer microwave integrated quantum circuits for scalable quantum computing
    Brecht, Teresa
    Pfaff, Wolfgang
    Wang, Chen
    Chu, Yiwen
    Frunzio, Luigi
    Devoret, Michel H.
    Schoelkopf, Robert J.
    [J]. NPJ QUANTUM INFORMATION, 2016, 2
  • [5] Brink M, 2018, INT EL DEVICES MEET
  • [6] General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED
    Bultink, C. C.
    Tarasinski, B.
    Haandbaek, N.
    Poletto, S.
    Haider, N.
    Michalak, D. J.
    Bruno, A.
    DiCarlo, L.
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (09)
  • [7] Decoherence benchmarking of superconducting qubits
    Burnett, Jonathan J.
    Bengtsson, Andreas
    Scigliuzzo, Marco
    Niepce, David
    Kudra, Marina
    Delsing, Per
    Bylander, Jonas
    [J]. NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [8] Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits
    Chow, Jerry M.
    Corcoles, A. D.
    Gambetta, Jay M.
    Rigetti, Chad
    Johnson, B. R.
    Smolin, John A.
    Rozen, J. R.
    Keefe, George A.
    Rothwell, Mary B.
    Ketchen, Mark B.
    Steffen, M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [9] Lateral metallic devices made by a multiangle shadow evaporation technique
    Costache, Marius V.
    Bridoux, German
    Neumann, Ingmar
    Valenzuela, Sergio O.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (04):
  • [10] Development of transmon qubits solely from optical lithography on 300 mm wafers
    Foroozani, N.
    Hobbs, C.
    Hung, C. C.
    Olson, S.
    Ashworth, D.
    Holland, E.
    Malloy, M.
    Kearney, P.
    O'Brien, B.
    Bunday, B.
    DiPaola, D.
    Advocate, W.
    Murray, T.
    Hansen, P.
    Novak, S.
    Bennett, S.
    Rodgers, M.
    Baker-O'Neal, B.
    Sapp, B.
    Barth, E.
    Hedrick, J.
    Goldblatt, R.
    Rao, S. S. Papa
    Osborn, K. D.
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02):