Numerical predictions of flashback limits of H2-enriched methane/air premixed laminar flames

被引:0
|
作者
Cuoci, A. [1 ]
Frassoldati, A. [1 ]
Cozzi, F. [2 ]
机构
[1] Politecn Milan, CRECK Modeling Lab, Dept Chem Mat & Chem Engn, Milan, Italy
[2] Politecn Milan, Dept Energy, Milan, Italy
关键词
Hydrogen; Flashback; Burner; Natural gas; Decarbonization;
D O I
10.1016/j.proci.2024.105696
中图分类号
O414.1 [热力学];
学科分类号
摘要
Hydrogen is considered as a promising resource for decarbonizing not just the industrial sector but also domestic heating systems. By partially substituting natural gas with hydrogen, domestic combustion-based conversion systems have the potential to enhance efficiency, decrease carbon emissions, and achieve cleaner combustion, specifically reducing levels of particulate matter. Nevertheless, hydrogen possesses properties that differ significantly from natural gas. In particular, due to its higher laminar flame speed, hydrogen has a much higher propensity to flashback than natural gas, raising notable safety concerns. This study aims to examine the impact of H2 addition (up to 100%) to natural gas on the combustion process in domestic condensing boilers. To achieve this objective, 3D numerical simulations are conducted, modeling the multi-hole geometry that emulate perforated burners commonly found in these appliances. The simulations incorporate detailed kinetics and conjugate heat transfer with the burner plate and consider various hole-to- hole distances for a more comprehensive analysis. Flashback limits are found for a wide range of operating conditions of interest for domestic applications, with equivalence ratios from 0.5 to 1 and hydrogen fractions from 0 (pure methane) to 1 (pure hydrogen). The results confirm the observations of previous works on planar, multi-slit configurations. More specifically, the results shows that the conventional flashback correlation based on the concept of critical velocity gradient becomes inaccurate for H2 fractions larger than 0.50 as it does not take into account stretch induced preferential diffusion effects, which are especially large in the multi-hole configuration here investigated.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames
    Tahtouh, T.
    Halter, F.
    Samson, E.
    Mounaim-Rousselle, C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (19) : 8329 - 8338
  • [22] Numerical simulation of the effects of NH3 and H2 on the combustion characteristics of laminar premixed ethylene/air flames
    Yao, Jinfang
    Dong, Wenlong
    Yang, Yuhang
    Wang, Dongyang
    Chu, Huaqiang
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2025,
  • [23] Laminar flame speed studies of lean premixed H2/CO/air flames
    Zhang, Yang
    Shen, Wenfeng
    Fan, Meng
    Zhang, Hai
    Li, Suhui
    COMBUSTION AND FLAME, 2014, 161 (10) : 2492 - 2495
  • [24] THERMAL STRUCTURE OF LAMINAR METHANE/AIR FLAMES: INFLUENCE OF H2 ENRICHMENT AND REACTANTS PREHEATING
    Lafay, Yannick
    Renou, Bruno
    Leventiu, Constantin
    Cabot, Gilles
    Boukhalfa, Abdelkrim
    COMBUSTION SCIENCE AND TECHNOLOGY, 2009, 181 (09) : 1145 - 1163
  • [25] Effect of CO2 Dilution on the Laminar Burning Velocities of Premixed Methane/Air Flames at Elevated Temperature
    Duva, B. C.
    Chance, L. E.
    Toulson, E.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2020, 142 (03):
  • [26] EFFECT OF CO2 DILUTION ON THE LAMINAR BURNING VELOCITIES OF PREMIXED METHANE/AIR FLAMES AT ELEVATED TEMPERATURE
    Duva, B. C.
    Chance, L. E.
    Toulson, E.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 4A, 2019,
  • [27] Experimental and Numerical Studies on Laminar Premixed Flames of Ethanol-Water-Air Mixtures
    Liang, Junjie
    Li, Gesheng
    Zhang, Zunhua
    Xiong, Zhuang
    Dong, Fan
    Yang, Rui
    ENERGY & FUELS, 2014, 28 (07) : 4754 - 4761
  • [28] Laminar Flame Characteristics of Sequential Two-Stage Combustion of Premixed Methane/Air Flames
    Duva, Berk Can
    Wang, Yen-Cheng
    Chance, Lauren Elizabeth
    Toulson, Elisa
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [29] LAMINAR FLAME CHARACTERISTICS OF SEQUENTIAL TWO-STAGE COMBUSTION OF PREMIXED METHANE/AIR FLAMES
    Duva, Berk Can
    Wang, Yen-Cheng
    Chance, Lauren Elizabeth
    Toulson, Elisa
    PROCEEDINGS OF THE ASME TURBO EXPO 2020: TURBOMACHINERY TECHNICAL CONFERENCE AND EXHIBITION, VOL 4A, 2020,
  • [30] Effects of hydrogen addition on laminar and turbulent premixed methane and iso-octane-air flames
    Mandilas, C.
    Ormsby, M. P.
    Sheppard, C. G. W.
    Woolley, R.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 : 1443 - 1450