Motor Imagery Classification Improvement of Two-Class Data with Covariance Decentering Eigenface Analysis for Brain-Computer Interface Systems

被引:0
|
作者
Choi, Hojong [1 ]
Park, Junghun [2 ]
Yang, Yeon-Mo [2 ]
机构
[1] Gachon Univ, Dept Elect Engn, 1342 Seongnam daero, Seongnam Si 13120, South Korea
[2] Kumoh Natl Inst Technol, Sch Elect Engn, Daehak ro 61, Gumi Si 39177, South Korea
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 21期
关键词
motor imagery; brain computer interface; covariance decentering eigenface analysis; CONTINUOUS WAVELET TRANSFORM; BCI COMPETITION 2003; EEG; PCA; ICA;
D O I
10.3390/app142110062
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study is intended to improve the motor imagery classification performance of two-class data points using newly developed covariance decentering eigenface analysis (CDC-EFA). When extracting the classification for the given data points, it is necessary to precisely distinguish the classes because the left and right features are difficult to differentiate. However, when centering is performed, the unique average data of each feature are lost, making them difficult to distinguish. CDC-EFA reverses the centering method to enhance data characteristics, making it possible to assign weights to data with a high correlation with other data. In experiments with the BCI dataset, the proposed CDC-EFA method was used after preprocessing by filtering and selecting the electroencephalogram data. The decentering process was then performed on the covariance matrix calculated when acquiring the unique face. Subsequently, we verified the classification improvement performance via simulations using several BCI competition datasets. Several signal processing methods were applied to compare the accuracy results of the motor imagery classification. The proposed CDC-EFA method yielded an average accuracy result of 98.89%. Thus, it showed improved accuracy compared with the other methods and stable performance with a low standard deviation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Tangent Space Features-Based Transfer Learning Classification Model for Two-Class Motor Imagery Brain-Computer Interface
    Gaur, Pramod
    McCreadie, Karl
    Pachori, Ram Bilas
    Wang, Hui
    Prasad, Girijesh
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (10)
  • [2] Increase performance of four-class classification for Motor-Imagery based Brain-Computer Interface
    Le Quoc Thang
    Temiyasathit, Chivalai
    2014 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2014,
  • [3] EEG datasets for motor imagery brain-computer interface
    Cho, Hohyun
    Ahn, Minkyu
    Ahn, Sangtae
    Kwon, Moonyoung
    Jun, Sung Chan
    GIGASCIENCE, 2017, 6 (07): : 1 - 8
  • [4] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [5] Phase locking analysis of motor imagery in brain-computer interface
    Hu, Jianfeng
    Mu, Zhendong
    Wang, Jinli
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 2, 2008, : 478 - 481
  • [6] Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface
    Corsi, Marie-Constance
    Chavez, Mario
    Schwartz, Denis
    Hugueville, Laurent
    Khambhati, Ankit N.
    Bassett, Danielle S.
    Fallani, Fabrizio De Vico
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (01)
  • [7] Data-driven Data Augmentation for Motor Imagery Brain-Computer Interface
    Lee, Hyeon Kyu
    Lee, Ji-Hack
    Park, Jin-Oh
    Choi, Young-Seok
    35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021), 2021, : 683 - 686
  • [8] To Explore the Potentials of Independent Component Analysis in Brain-Computer Interface of Motor Imagery
    Wu, Xiaopei
    Zhou, Bangyan
    Lv, Zhao
    Zhang, Chao
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (03) : 775 - 787
  • [9] A Hybrid Transfer Learning Approach for Motor Imagery Classification in Brain-Computer Interface
    Wang, Xuying
    Yang, Rui
    Huang, Mengjie
    Yang, Zhengni
    Wan, Zitong
    2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 496 - 500
  • [10] Classification of Motor Imagery for Ear-EEG based Brain-Computer Interface
    Kim, Yong-Jeong
    Kwak, No-Sang
    Lee, Seong-Whan
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 129 - 130