Unveiling the mechanism of CO2 electroreduction to C1 and C2 products of ordered double transition metal MXenes

被引:0
|
作者
Khanam, Romana [1 ]
Fozia, Syed [1 ]
Dar, Manzoor Ahmad [1 ]
机构
[1] Islamic Univ Sci & Technol, Dept Chem, Awantipora 192122, Jammu & Kashmir, India
来源
SUSTAINABLE ENERGY & FUELS | 2024年 / 8卷 / 23期
关键词
FINDING SADDLE-POINTS; ELECTROCHEMICAL REDUCTION; OXYGEN EVOLUTION; CATALYSTS; CARBON; HYDROXIDE; ETHYLENE; INSIGHTS; FORMATE; ETHANOL;
D O I
10.1039/d4se00582a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Design of highly active and durable electrocatalysts for CO2 utilization and conversion into value-added chemicals in a green manner is central to addressing the global concerns of energy crisis and climate change for a sustainable future. Herein, we used rigorous first principles simulations to comprehensively screen and explore the CO2 reduction activity of twelve different two-dimensional ordered double transition metal MXenes. Our results indicate that all twelve MXenes show metallic characteristics and can significantly activate CO2 with strong binding energy (-1.60 to -2.40 eV). The van der Waals and solvation effects in general have little impact on the CO2 binding energy; however, Hubbard correction is found to significantly influence the CO2 binding on these catalysts. Electronic structure analysis reveals that charge redistribution from MXene catalysts to antibonding states of CO2 results in strong hybridization between CO2 orbitals and surface metal orbitals. The strong CO2 binding is further confirmed by enhanced charge transfer (-1.17 to -1.65 |e-|) from MXenes to the adsorbed CO2 molecule. Simulations based on free energy pathways show that Mo2TaC2 and Mo2TiC2 possess superior catalytic activity for conversion of CO2 into methanol and methane with very low limiting potential values of -0.35 and -0.39 V, respectively, whereas Mo2TaC2 and Mo2VC2 were found to display excellent performance for ethanol formation with record low limiting potentials of -0.32 V and -0.42 V, respectively. Further, the MXene-based catalysts Mo2TiC2 and Mo2VC2 were found to be highly selective for CO2 reduction to methane and ethanol respectively. Extensive analysis based on linear scaling relations between the adsorption free energy of different reaction intermediates and limiting potential values highlights that the adsorption free energy for *CO2 and *OCHO intermediates plays a critical role in deciding the overall activity of the MXene catalysts. We believe that the above findings can be highly important for the design of MXene-based catalysts for CO2 conversion.
引用
收藏
页码:5595 / 5607
页数:13
相关论文
共 50 条
  • [21] Enhancing CO2 Electroreduction to C2 Products on Metal-Nitrogen Sites by Regulating H2O Dissociation
    Zhu, Weiwei
    Liu, Suqin
    Huang, Rongjiao
    Su, Yuke
    Huang, Kui
    He, Zhen
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (20) : 26316 - 26324
  • [22] Directing the selectivity of CO2 electroreduction to target C2 products via non-metal doping on Cu surfaces
    Zhi, Xing
    Jiao, Yan
    Zheng, Yao
    Davey, Kenneth
    Qiao, Shi-Zhang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (10) : 6345 - 6351
  • [23] Reduction of CO2 to C1 products and fuel.
    Mill, T
    Ross, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U577 - U577
  • [24] Asymmetric Copper-Sulphur Sites Promote C-C Coupling for Selective CO2 Electroreduction to C2 Products
    Liang, Liang
    Yang, Li
    Heine, Thomas
    Arinchtein, Aleks
    Wang, Xingli
    Huebner, Jessica
    Schmidt, Johannes
    Thomas, Arne
    Strasser, Peter
    ADVANCED ENERGY MATERIALS, 2024, 14 (12)
  • [25] Electric-field promoted C-C coupling over Cu nanoneedles for CO2 electroreduction to C2 products
    Li, HuangJingWei
    Zhou, Huimin
    Zhou, Yajiao
    Hu, Junhua
    Miyauchi, Masahiro
    Fu, Junwei
    Liu, Min
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (02) : 519 - 525
  • [26] Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products
    Liu, Shuo
    Zhang, Baoshan
    Zhang, Lihong
    Sun, Jie
    JOURNAL OF ENERGY CHEMISTRY, 2022, 71 : 63 - 82
  • [27] Machine learning assisted binary alloy catalyst design for the electroreduction of CO2 to C2 products
    Gariepy, Zachary
    Chen, Guiyi
    Xu, Anni
    Lu, Zhuole
    Chen, Zhi Wen
    Singh, Chandra Veer
    ENERGY ADVANCES, 2023, 2 (03): : 410 - 419
  • [28] Copper-based catalysts for CO2 electroreduction to C2/2+ products: Advance and perspective
    Wang, Fangmu
    Lu, Zhehong
    Guo, Hu
    Hao, Gazi
    Jiang, Wei
    Liu, Guigao
    COORDINATION CHEMISTRY REVIEWS, 2024, 515
  • [29] Constructing Asymmetric Cu Catalytic Sites for CO2 Electroreduction with Higher Selectivity to C2 Products
    Meng, Fanfei
    Yao, Xiaohui
    He, Jingting
    Gu, Jianxia
    Li, Wei
    Sun, Chunyi
    Wang, Xinlong
    Su, Zhongmin
    CHEMSUSCHEM, 2024,
  • [30] Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products
    Shuo Liu
    Baoshan Zhang
    Lihong Zhang
    Jie Sun
    Journal of Energy Chemistry , 2022, (08) : 63 - 82