Data-driven energy consumption prediction of a university office building using machine learning algorithms

被引:7
|
作者
Yesilyurt, Hasan [1 ]
Dokuz, Yesim [2 ]
Dokuz, Ahmet Sakir [2 ]
机构
[1] Aksaray Univ, Energy Management Coordinat Off, Aksaray, Turkiye
[2] Nigde Omer Halisdemir Univ, Fac Engn, Dept Comp Engn, Nigde, Turkiye
关键词
Building energy consumption prediction; Machine learning; Deep learning; Data-driven models; Energy efficiency; Sustainable buildings; ARTIFICIAL NEURAL-NETWORKS; COOLING LOAD PREDICTION; ELECTRICITY CONSUMPTION; RANDOM FOREST; REGRESSION; SYSTEMS; MODELS; PERFORMANCE; ANN; SIMULATION;
D O I
10.1016/j.energy.2024.133242
中图分类号
O414.1 [热力学];
学科分类号
摘要
Redundant consumption of energy in buildings is an important issue that causes increasing problems of climate change and global warming in the world. Therefore, it is necessary to develop efficient energy management approaches in buildings. Accurate prediction of energy consumption plays an important role to obtain energyefficient buildings. Data-driven methods gained attention for estimation of energy consumption in buildings which would provide more accurate prediction results. In this study, hourly energy consumption prediction is performed on a university office building to increase energy efficiency in the building using machine learning algorithms. A new parameter is proposed, air conditioning demand, to improve accuracy of the algorithms. Moreover, temporal parameters, i.e. day of week, month of year, and hour of day, were used along with meteorological parameters to improve prediction performance of the algorithms. Experimental results show that hourly energy consumption of the building could be predicted using machine learning algorithms with high performance. When the results were analysed, Deep Neural Network (DNN) achieved better performance among other alternative algorithms. The average values of R2, RMSE and MAPE for DNN were 0.959, 4.796 kWh, and 5.738 %, respectively. Also, the addition of proposed air conditioning demand parameter provided improved performance to the algorithms.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Prediction of Energy Consumption of an Administrative Building using Machine Learning and Statistical Methods
    El Alaoui, Meryem
    Chahidi, Laila Ouazzani
    Rougui, Mohammed
    Lemrani, Abdeghafour
    Mechaqrane, Abdellah
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2023, 9 (05): : 1007 - 1022
  • [32] Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques
    Borowski, Marek
    Zwolinska, Klaudia
    ENERGIES, 2020, 13 (23)
  • [33] Data-Driven Building Energy Consumption Prediction Model Based on VMD-SA-DBN
    Qin, Yongrui
    Zhao, Meng
    Lin, Qingcheng
    Li, Xuefeng
    Ji, Jing
    MATHEMATICS, 2022, 10 (17)
  • [34] Machine learning algorithms for the prediction of the strength of steel rods: an example of data-driven manufacturing in steelmaking
    Ruiz, Estela
    Ferreno, Diego
    Cuartas, Miguel
    Lopez, Ana
    Arroyo, Valentin
    Gutierrez-Solana, Federico
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2020, 33 (09) : 880 - 894
  • [35] Physical energy and data-driven models in building energy prediction: A review
    Chen, Yongbao
    Guo, Mingyue
    Chen, Zhisen
    Chen, Zhe
    Ji, Ying
    ENERGY REPORTS, 2022, 8 : 2656 - 2671
  • [36] Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach
    Ye, Zhongnan
    Cheng, Kuangly
    Hsu, Shu-Chien
    Wei, Hsi-Hsien
    Cheung, Clara Man
    APPLIED ENERGY, 2021, 301
  • [37] Predicting the impact of climate change on building energy consumption by using data-driven approaches
    Khalil, Mohamad
    Akhlaghi, Yousef G.
    Ben, Hui
    Royapoor, Mohammad
    Walker, Sara
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENERGY, 2025, 178 (02) : 61 - 76
  • [38] Data-Driven Thermal Deviation Prediction in Turning Machine-Tool - A Comparative Analysis of Machine Learning Algorithms
    Ouerhani, Nabil
    Loehr, Bernard
    Rizzotti-Kaddouri, Aicha
    Santo De Pinho, Dylan
    Limat, Adrien
    Schinderholz, Philippe
    3RD INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, 2022, 200 : 185 - 193
  • [39] Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms
    Raihan-Al-Masud, Md
    Mondal, M. Rubaiyat Hossain
    PLOS ONE, 2020, 15 (02):
  • [40] Shear Strength Prediction of Slender Concrete Beams Reinforced with FRP Rebar Using Data-Driven Machine Learning Algorithms
    Karim, Mohammad Rezaul
    Islam, Kamrul
    Billah, A. H. M. Muntasir
    Alam, M. Shahria
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2023, 27 (02)