Mixotrophic cultivation of microalgae-bacteria consortia enhances dark fermentation effluent treatment

被引:0
作者
Lacroux, Julien [1 ]
Mahieux, Margot [1 ]
Llamas, Mercedes [1 ,2 ]
Bonnafous, Anais [1 ]
Trably, Eric [1 ]
Steyer, Jean-Philippe [1 ]
van Lis, Robert [1 ]
机构
[1] Univ Montpellier, INRAE, LBE, 102 Ave Etangs, F-11100 Narbonne, France
[2] Campus Univ Pablo Olavide, CSIC, Inst Grasa, Edificio 46,Ctra Utrera km 1, Seville 41013, Spain
关键词
Dark fermentation; Volatile fatty acids; Microalgae; Mixotrophy; Bacterial community; BIOHYDROGEN PRODUCTION; HYDROGEN-PRODUCTION; WASTE-WATER; BIOMASS; REMOVAL; CULTURE; GROWTH;
D O I
10.1016/j.biortech.2024.131616
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Dark fermentation (DF) is a waste treatment bioprocess which produces biohydrogen and volatile fatty acids (VFAs) such as acetate or butyrate. DF can be coupled with microalgae cultivation, allowing VFA conversion into valuable biomass. Nevertheless, the process is hindered by slow butyrate consumption. In this study, novel artificial microalgae-bacteria consortia were used as a strategy to accelerate butyrate removal. Three microalgal strains with various trophic metabolisms, Chlorella sorokiniana, , Euglena gracilis and Ochromonas danica, , were cultivated on DF effluent that was either sterile or contained endogenous bacteria. Bacteria did not impact microalgal biomass production of C. sorokiniana or E. gracilis while accelerating butyrate removal rates 2 to 10- fold. O. danica greatly impacted microbial diversity, probably due to its phagotrophic metabolism. These results show that bacteria in organic rich effluents can greatly aid in substrate removal while allowing microalgal growth, inspiring bioprocesses coupling raw fermentation effluents with microalgae biomass production and valorization.
引用
收藏
页数:10
相关论文
共 42 条
[1]   A COMPARATIVE BIOCHEMICAL STUDY OF 2 SPECIES OF OCHROMONAS [J].
AARONSON, S ;
BAKER, H .
JOURNAL OF PROTOZOOLOGY, 1959, 6 (03) :282-284
[2]   Doubling of Microalgae Productivity by Oxygen Balanced Mixotrophy [J].
Abiusi, Fabian ;
Wijffels, Rene H. ;
Janssen, Marcel .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (15) :6065-6074
[3]   Continuous biohydrogen production in a CSTR using starch as a substrate [J].
Arooj, Muhammad Farhan ;
Han, Sun-Kee ;
Kim, Sang-Hyoun ;
Kim, Dong-Hoon ;
Shin, Hang-Sik .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (13) :3289-3294
[4]   Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey [J].
Asunis, F. ;
De Gioannis, G. ;
Isipato, M. ;
Muntoni, A. ;
Polettini, A. ;
Pomi, R. ;
Rossi, A. ;
Spiga, D. .
BIORESOURCE TECHNOLOGY, 2019, 289
[5]   New insights into raceway cultivation of Euglena gracilis under long-term semi-continuous nitrogen starvation [J].
Bakku, Ranjith Kumar ;
Yamamoto, Yoshimasa ;
Inaba, Yu ;
Hiranuma, Taro ;
Gianino, Enrico ;
Amarianto, Lawi ;
Mahrous, Waleed ;
Suzuki, Hideyuki ;
Suzuki, Kengo .
SCIENTIFIC REPORTS, 2023, 13 (01)
[6]   Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships [J].
Burgunter-Delamare, Bertille ;
Shetty, Prateek ;
Vuong, Trang ;
Mittag, Maria .
PLANTS-BASEL, 2024, 13 (06)
[7]   Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana [J].
Cecchin, M. ;
Benfatto, S. ;
Griggio, F. ;
Mori, A. ;
Cazzaniga, S. ;
Vitulo, N. ;
Delledonne, M. ;
Ballottari, M. .
SCIENTIFIC REPORTS, 2018, 8
[8]   Screening of microalgae strains for efficient biotransformation of small molecular organic acids from dark fermentation biohydrogen production wastewater [J].
Chen, Cheng ;
Shi, Qianwen ;
Tong, Akang ;
Sun, Liyun ;
Fan, Jianhua .
BIORESOURCE TECHNOLOGY, 2023, 390
[9]   Microalgae biorefinery: High value products perspectives [J].
Chew, Kit Wayne ;
Yap, Jing Ying ;
Show, Pau Loke ;
Suan, Ng Hui ;
Juan, Joon Ching ;
Ling, Tau Chuan ;
Lee, Duu-Jong ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2017, 229 :53-62
[10]   Effects of nutrient availability and Ochromonas sp predation on size and composition of a simplified aquatic bacterial community [J].
Corno, Gianluca .
FEMS MICROBIOLOGY ECOLOGY, 2006, 58 (03) :354-363