Detection of the jellyfish Chrysaora pacifica by RPA-CRISPR-Cas12a environmental DNA (eDNA) assay and its evaluation through field validation and comparative eDNA analyses

被引:0
作者
Kim, Kyuhyeong [1 ]
Maji, Usha Jyoti [1 ,2 ]
Shim, Kyu-Young [1 ]
Yeo, In-Cheol [1 ]
Jeong, Chang-Bum [1 ]
机构
[1] Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon
[2] Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Odisha, Bhubaneswar
基金
新加坡国家研究基金会;
关键词
Chrysaora pacifica; dPCR; eDNA; Jinhae Bay; Metabarcoding; RPA-CRISPR-Cas12a;
D O I
10.1016/j.scitotenv.2024.176945
中图分类号
学科分类号
摘要
Climate-driven environmental changes and anthropogenic activities can result in the proliferation of non-indigenous aquatic species such as jellyfish that may cause envenomation and various ecological disruptions. Here we developed a two-step RPA-CRISPR-Cas12a eDNA assay, consisting of target eDNA amplification followed by a CRISPR-Cas12 reaction, for the early detection of Chrysaora pacifica, a jellyfish species often considered non-indigenous to South Korea. The assay demonstrated high sensitivity, with a detection limit of two copies COI/μL for eDNA derived from C. pacifica, using target specific RPA primers and crRNA sequences. Field validation of the assay using eDNA samples from Jinhae Bay collected over eight months of time-series monitoring, revealed temporal distribution of the jellyfish which correlated with results of digital polymerase chain reaction (dPCR) and eDNA metabarcoding. The C. pacifica eDNA assays were also corroborated (R-square 0.7891) by reports from a citizen science–based jellyfish-monitoring program operated by the National Institute of Fisheries Science, South Korea. Our RPA-CRISPR-Cas eDNA assay can therefore, be an efficient alternative to traditional tools for the early detection of outbreaks of non-indigenous or harmful species in marine ecosystems. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 44 条
  • [1] Bohmann K., Evans A., Gilbert M.T.P., Carvalho G.R., Creer S., Knapp M., Yu D.W., Bruyn M.D., Environmental DNA for wildlife biology and biodiversity monitoring, Trends Ecol. Evol., 29, pp. 358-367, (2014)
  • [2] Bolte B., Goldsbury J., Huerlimann R., Jerry D., Kingsford M., Validation of eDNA as a viable method of detection for dangerous cubozoan jellyfish, Environ. DNA, 3, pp. 769-779, (2021)
  • [3] Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Et al., Reproducible interactive scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 37, pp. 852-857, (2019)
  • [4] Callagan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P., DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, pp. 581-583, (2016)
  • [5] Chen J.S., Ma E., Harrington L.B., Da Costa M., Tian X., Palefsky J.M., Doudna J.A., CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity, Science, 360, pp. 436-439, (2018)
  • [6] Chen J., Huang Y., Xiao B., Deng H., Gong K., Li K., Li L., Hao W., Development of a RPA-CRISPR-Cas12a assay for rapid, simple, and sensitive detection of mycoplasma hominis, Front. Microbiol., 13, (2022)
  • [7] Darling J.D., Jerde C.L., Sepulveda A.J., What do you mean by false positive?, Environ. DNA, 3, pp. 879-883, (2021)
  • [8] Deiner K., Walser J., Machler E., Altermatt F., Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA, Biol. Conserv., 183, pp. 53-63, (2015)
  • [9] Ding X., Yin K., Li Z., Lalla R.V., Ballesteros E., Sfeir M.M., Liu C., Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay, Nat. Commun., 11, (2020)
  • [10] Geller J., Meyer C., Parker M., Hawk H., Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys, Mol. Eclo. Resour., 13, pp. 851-861, (2013)