Characteristic curves for set-valued Hamilton-Jacobi equations

被引:0
|
作者
Visetti, Daniela [1 ]
机构
[1] Free University of Bozen-Bolzano, Faculty of Economics and Management
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Calculations - Curve fitting - Hamiltonians - Lagrange multipliers - Mechanics
引用
收藏
相关论文
共 38 条
  • [1] Singularities of solutions of Hamilton-Jacobi equations
    Cannarsa, Piermarco
    Cheng, Wei
    arXiv, 2021,
  • [2] A hermite method with a discontinuity sensor for Hamilton-Jacobi equations
    Alvarez Loya, Allen
    Appelö, Daniel
    arXiv, 2021,
  • [3] A new approach to the approximate solutions of Hamilton-Jacobi equations
    Osaka Prefecture University, 1-1 Gakuen, Sakai, Osaka 599-8531, Japan
    不详
    不详
    不详
    World Acad. Sci. Eng. Technol., (313-316):
  • [4] Uniform exponential contraction for viscous Hamilton-Jacobi equations
    Khanin, Konstantin
    Zhang, Ke
    Zhang, Lei
    arXiv, 2021,
  • [5] Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces
    Liu, Qing
    Nakayasu, Atsushi
    arXiv, 2017,
  • [6] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Han, Wonho
    Kim, Kwangil
    Hong, Unhyok
    Applications of Mathematics, 2023, 68 (05): : 661 - 684
  • [7] A System of Hamilton-Jacobi Equations Characterizing Geodesic Centroidal Tessellations
    Camilli, Fabio
    Festa, Adriano
    Communications on Applied Mathematics and Computation, 2023,
  • [8] An approximation of the squared Wasserstein distance and an application to Hamilton-Jacobi equations
    Bertucci, Charles
    Lions, Pierre-Louis
    arXiv,
  • [9] UNIQUENESS OF SEMI-CONCAVE WEAK SOLUTIONS FOR HAMILTON-JACOBI EQUATIONS
    École Normale Supérieure de Lyon, Lyon, France
    arXiv,
  • [10] Equivalence of minimax and viscosity solutions of path-dependent Hamilton-Jacobi equations
    Gomoyunov, Mikhail I.
    Plaksin, Anton R.
    arXiv, 2022,