Investigation of removing orange II azo dye from wastewater through an oxidation process

被引:0
|
作者
Akter, Farzana [1 ]
Dong, Younsuk [2 ]
机构
[1] Bangladesh Agr Res Inst, Gazipur, Bangladesh
[2] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA
关键词
Wastewater; Azo dye; Advanced oxidation process; Coagulation; Agriculture; SODIUM-HYPOCHLORITE; DEGRADATION; DECOLORIZATION; ADSORPTION; COMPOSITE; CHLORINE; QUALITY; GROWTH; YIELD;
D O I
10.1007/s13201-024-02311-2
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Rapid industrial growth in Bangladesh, especially in the textile industry, has led to water pollution from toxic azo dyes like orange-II, which are harmful to ecosystems and enter the food chain via irrigation. This study examined the use of chemical coagulation (using C6H11NO4X2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{C}}_{6} {\text{H}}_{11} {\text{NO}}_{4} {\text{X}}_{2}$$\end{document} and FeCl3<middle dot>6H2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{FeCl}}_{3} \cdot 6{\text{H}}_{2} {\text{O}}$$\end{document}) and advanced oxidation process (using NaOCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NaOCl}}$$\end{document}) to treat orange-II dye for irrigation. However, C6H11NO4X2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{C}}_{6} {\text{H}}_{11} {\text{NO}}_{4} {\text{X}}_{2}$$\end{document} and FeCl3<middle dot>6H2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{FeCl}}_{3} \cdot 6{\text{H}}_{2} {\text{O}}$$\end{document} showed limited effectiveness in removing orange-II dye across various pH (3, 6, 9, and 12) levels. In contrast, NaOCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NaOCl}}$$\end{document} achieved significant dye removal rates of over 90-99%. The study focused on high color removal, limited ClO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ClO}}_{2}$$\end{document} and neutral pH after the test. Variables included NaOCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NaOCl}}$$\end{document} doses (0.5 ml, 2.5 ml, and 5 ml), orange II dye doses (50 mg, 100 mg, and 150 mg) under different pH (3, 6, 8, 9 and 12) conditions. The manuscript is the first to assess orange-II dye using higher doses (2.5 ml and 5 ml) of NaOCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NaOCl}}$$\end{document} compared to other studies, as an alkaline chemical to neutralize pH levels post-test. The highest dye removal occurred at pH 9 with similar results at other pH levels except pH 12. However, despite effective color removal, the pH remained alkaline at pH 8, 9, and 12 after the test. Hence, optimal experimental conditions of operational parameters were pH = 3 or 6, 2.5 ml NaOCl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{NaOCl}}$$\end{document} dose with 100 mg/L or 150 mg/L dye doses. Further research is recommended on the degradation process, toxicological analysis of the final product, and cost-effectiveness for safe irrigation water.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ULTRASONIC CAVITATION IN WASTEWATER TREATMENT FROM AZO DYE METHYL ORANGE
    Sukhatskiy, Yurii
    Znak, Zenovii
    Zin, Olha
    Chupinskyi, Dmytro
    CHEMISTRY & CHEMICAL TECHNOLOGY, 2021, 15 (02): : 284 - 290
  • [2] Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II
    Athalathil, S.
    Stueber, F.
    Bengoa, C.
    Font, J.
    Fortuny, A.
    Fabregat, A.
    JOURNAL OF HAZARDOUS MATERIALS, 2014, 267 : 21 - 30
  • [3] Mn(II) oxidation and manganese-oxide reduction on the decolorization of an azo dye
    Shoiful, Ahmad
    Kambara, Hiromi
    Cao, Linh Thi Thuy
    Matsushita, Shuji
    Kindaichi, Tomonori
    Aoi, Yoshiteru
    Ozaki, Noriatsu
    Ohashi, Akiyoshi
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2020, 146
  • [4] Effects of different henna plant parts on enhanced removal of an azo dye Orange II: Biotic and abiotic contributions
    Tang, Junhong
    Wu, Mengke
    Huang, Jingang
    Chen, Jianjun
    Han, Wei
    Xie, Zhengmiao
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2016, 35 (02) : 404 - 410
  • [5] Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology
    Ramirez, Cecilia
    Saldana, Adriana
    Hernandez, Berenice
    Acero, Roberto
    Guerra, Ricardo
    Garcia-Segura, Sergi
    Brillas, Enric
    Peralta-Hernandez, Juan M.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2013, 19 (02) : 571 - 579
  • [6] Treatment of wastewater containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and
    Liu, Xiangjing
    Chen, Zhimin
    Du, Wenqiao
    Liu, Pengfei
    Zhang, Long
    Shi, Fengwei
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 311
  • [7] Efficient Removal of Azo Dye from Wastewater Using the Non-Toxic Potassium Ferrate Oxidation-Coagulation Process
    Jargalsaikhan, Munkhtsooj
    Lee, Jieun
    Jang, Am
    Jeong, Sanghyun
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [8] Investigation of dye removal with isolated biomasses from whey wastewater
    Sofu, A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2019, 16 (01) : 71 - 78
  • [9] Biodegradation of Orange II dye by Phanerochaete chrysosporium in simulated wastewater
    Sharma, Praveen
    Singh, Lakhvinder
    Dilbaghi, Neeraj
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2009, 68 (02): : 157 - 161
  • [10] Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism
    Tarkwa, Jean-Baptiste
    Oturan, Nihal
    Acayanka, Elie
    Laminsi, Samuel
    Oturan, Mehmet A.
    ENVIRONMENTAL CHEMISTRY LETTERS, 2019, 17 (01) : 473 - 479