Microstructure and mechanical properties of ZrB2 ceramic particle reinforced AlCoCrFeNi high entropy alloy composite materials prepared by spark plasma sintering

被引:4
|
作者
Wang, Hanbo [1 ]
Zhang, Lan [1 ]
Deng, Jia [1 ]
Li, Longfei [1 ]
Rong, Yan [1 ]
Tan, Cong [1 ]
Wang, Fei [1 ]
机构
[1] Zhengzhou Univ, Sch Mech & Safety Engn, Zhengzhou, Peoples R China
关键词
Ceramic particles; High entropy alloy matrix composites; Spark plasma sintering; Microstructure and mechanical property; LONG-TERM EXPOSURE; TENSILE PROPERTIES; BEHAVIOR; PRECIPITATION; TEMPERATURE; MANUFACTURE;
D O I
10.1016/j.ceramint.2024.08.371
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, xZrB(2)-AlCoCrFeNi (x = 0,5,10,15) (wt%) based high entropy alloy (HEA) composites were prepared by Spark Plasma Sintering (SPS). The influence of ceramic particle ZrB2 content on the densification behavior, microstructural evolution, and mechanical properties of the composites was investigated through scanning electron microscopy, X-ray diffraction, and mechanical performance testing. The results indicate that the HEA composites undergo a phase transformation, from (FCC + BCC + B-2) structure to (FCC + BCC + B-2+Laves) structure with the addition of ZrB2. The incorporation of ZrB2 facilitates the emergence of the Cr precipitate phase, and the grain size of this phase enlarges as the ZrB2 content rises. Additionally, when the ZrB2 content is 10 %, the maximum compressive strength reached 2071 MPa. Furthermore, at the ZrB2 content of 15 %, the composite material achieves a maximum densification of 99.13 % and a maximum hardness of 1222.2 HV.
引用
收藏
页码:45311 / 45319
页数:9
相关论文
共 50 条
  • [1] The fabrication and mechanical properties of SiC/ZrB2 laminated ceramic composite prepared by spark plasma sintering
    Wang, Hailong
    Fan, Bingbing
    Feng, Lun
    Chen, Deliang
    Lu, Hongxia
    Xu, Hongliang
    Wang, Chang-An
    Zhang, Rui
    CERAMICS INTERNATIONAL, 2012, 38 (06) : 5015 - 5022
  • [2] Synthesis, Microstructure and Mechanical Properties of ZrB2 Ceramic Prepared by Mechanical Alloying and Spark Plasma Sintering
    Hu, Chun Feng
    Sakka, Yoshio
    Uchikoshi, Tetsuo
    Suzuki, Tohru S.
    Jang, Byung Koog
    Grasso, Salvatore
    Suarez, Gustavo
    HIGH-PERFORMANCE CERAMICS VI, 2010, 434-435 : 165 - 168
  • [3] Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering
    Zhou, P. F.
    Xiao, D. H.
    Yuan, T. C.
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2020, 33 (07) : 937 - 946
  • [4] Microstructure and mechanical properties of AlCoCrFeNi high entropy alloys produced by spark plasma sintering
    Zhou, P. F.
    Xiao, D. H.
    Wu, Z.
    Song, M.
    MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
  • [5] Microstructure and mechanical properties of CoCrFeNiTa high entropy alloy prepared by mechanical alloying and spark plasma sintering
    Tang, Xingchang
    Hou, Yuanyuan
    Wang, Canglong
    Liu, Yiwen
    Meng, Zhaocang
    Wang, Yinlong
    Cheng, Ganghu
    Zhou, Weilian
    La, Peiqing
    MATERIALS CHARACTERIZATION, 2024, 210
  • [6] Effect of heating rate on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy produced by spark plasma sintering
    Xie, Siyao
    Li, Ruidi
    Yuan, Tiechui
    Zhou, Libo
    Zhang, Mei
    Wang, Minbo
    Niu, Pengda
    Cao, Peng
    Chen, Chao
    MATERIALS CHARACTERIZATION, 2019, 154 : 169 - 180
  • [7] Microstructure and properties of CrMnFeCoNi high-entropy alloy prepared by mechanical alloying and spark plasma sintering
    Ni, Xuyao
    Dai, Ting
    Lu, Tao
    Pan, Jiayi
    Li, Miao
    Dai, Jianwen
    POWDER METALLURGY, 2019, 62 (01) : 38 - 43
  • [8] Microstructure and mechanical properties of CoCrNiCuX high-entropy alloys fabricated by spark plasma sintering
    Luo, Wenqi
    Zou, Qin
    Li, Yanguo
    Ye, Xihui
    Yang, Xiaowei
    Song, Jintao
    Luo, Yongan
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2022, 113 (10) : 911 - 919
  • [9] Microstructural development in nanostructured AlCoCrFeNi-ZrO2 high-entropy alloy composite prepared with mechanical alloying and spark plasma sintering methods
    Ghanbariha, M.
    Farvizi, M.
    Ebadzadeh, T.
    MATERIALS RESEARCH EXPRESS, 2019, 6 (12)
  • [10] Microstructure and mechanical properties of MoNbTaW refractory high-entropy alloy prepared by spark plasma sintering
    Liu, Jiahao
    Zhao, Xinming
    Zhang, Shaoming
    Sheng, Yanwei
    Hu, Qiang
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (02) : 484 - 496