Lipids balance as a spectroscopy marker of diabetes. Analysis of FTIR spectra by 2D correlation and machine learning analyses

被引:1
|
作者
Kryska, Adrianna [1 ]
Depciuch, Joanna [2 ,3 ]
Krysa, Mikolaj [1 ]
Paja, Wieslaw [4 ]
Wosiak, Agnieszka [5 ]
Budzynska, Barbara [7 ]
Sroka-Bartnicka, Anna [1 ]
Nicos, Marcin [6 ]
机构
[1] Med Univ Lublin, Fac Biomed Sci, Independent Unit Spect & Chem Imaging, Chodzki 4a, PL-20093 Lublin, Poland
[2] Polish Acad Sci, Inst Nucl Phys, Walerego Eljasza Radzikowskiego 152, PL-31342 Krakow, Poland
[3] Med Univ Lublin, Dept Biochem & Mol Biol, Chodzki 1, PL-20093 Lublin, Poland
[4] Univ Rzeszow, Inst Comp Sci, Pigon 1, PL-35310 Rzeszow, Poland
[5] Lodz Univ Technol, Inst Informat Technol, Al Politechn 8, PL-93590 Lodz, Poland
[6] Med Univ Lublin, Dept Pneumonol Oncol & Allergol, Jaczewskiego 8, PL-20090 Lublin, Poland
[7] Med Univ Lublin, Fac Biomed Sci, Independent Lab Behav Studies, Chodzki 4A, PL-20093 Lublin, Poland
关键词
Diabetes; Animal model; Lipids; Multivariate analysis; FTIR; Machine learning; FEATURE-SELECTION METHODS; MELLITUS; RISK;
D O I
10.1016/j.saa.2024.124653
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The number of people suffering from type 2 diabetes has rapidly increased. Taking into account, that elevated intracellular lipid concentrations, as well as their metabolism, are correlated with diminished insulin sensitivity, in this study we would like to show lipids spectroscopy markers of diabetes. For this purpose, serum collected from rats (animal model of diabetes) was analyzed using Fourier Transformed Infrared-Attenuated Total Reflection (FTIR-ATR) spectroscopy. Analyzed spectra showed that rats with diabetes presented higher concentration of phospholipids and cholesterol in comparison with non-diabetic rats. Moreover, the analysis of second (IInd) derivative spectra showed no structural changes in lipids. Machine learning methods showed higher accuracy for IInd derivative spectra (from 65 % to 89 %) than for absorbance FTIR spectra (53-65 %). Moreover, it was possible to identify significant wavelength intervals from IInd derivative spectra using random forest-based feature selection algorithm, which further increased the accuracy of the classification (up to 92 % for phospholipid region). Moreover decision tree based on the selected features showed, that peaks at 1016 cm(-1) and 2936 cm(-1) can be good candidates of lipids marker of diabetes.
引用
收藏
页数:9
相关论文
共 27 条
  • [21] Two-trace two-dimensional correlation spectra (2T2D-COS) analysis using FTIR spectra to monitor the immune response by COVID-19
    Karthikeyan, Sivakumaran
    Vazquez-Zapien, Gustavo J.
    Martinez-Cuazitl, Adriana
    Delgado-Macuil, Raul J.
    Rivera-Alatorre, Daniel E.
    Garibay-Gonzalez, Francisco
    Delgado-Gonzalez, Josemaria
    Valencia-Trujillo, Daniel
    Guerrero-Ruiz, Melissa
    Atriano-Colorado, Consuelo
    Lopez-Reyes, Alberto
    Lopez-Mezquita, Dante J.
    Mata-Miranda, Monica M.
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2024, 102 (01): : 53 - 67
  • [22] Two-trace two-dimensional correlation spectra (2T2D-COS) analysis using FTIR spectra to monitor the immune response by COVID-19
    Sivakumaran Karthikeyan
    Gustavo J. Vazquez-Zapien
    Adriana Martinez-Cuazitl
    Raul J. Delgado-Macuil
    Daniel E. Rivera-Alatorre
    Francisco Garibay-Gonzalez
    Josemaria Delgado-Gonzalez
    Daniel Valencia-Trujillo
    Melissa Guerrero-Ruiz
    Consuelo Atriano-Colorado
    Alberto Lopez-Reyes
    Dante J. Lopez-Mezquita
    Monica M. Mata-Miranda
    Journal of Molecular Medicine, 2024, 102 : 53 - 67
  • [23] Machine learning–based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation
    Jiliang Ren
    Ying Yuan
    Meng Qi
    Xiaofeng Tao
    European Radiology, 2020, 30 : 6858 - 6866
  • [24] Machine learning-based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation
    Ren, Jiliang
    Yuan, Ying
    Qi, Meng
    Tao, Xiaofeng
    EUROPEAN RADIOLOGY, 2020, 30 (12) : 6858 - 6866
  • [25] 3D vs. 2D MRI radiomics in skeletal Ewing sarcoma: Feature reproducibility and preliminary machine learning analysis on neoadjuvant chemotherapy response prediction
    Gitto, Salvatore
    Corino, Valentina D. A.
    Annovazzi, Alessio
    Milazzo Machado, Estevao
    Bologna, Marco
    Marzorati, Lorenzo
    Albano, Domenico
    Messina, Carmelo
    Serpi, Francesca
    Anelli, Vincenzo
    Ferraresi, Virginia
    Zoccali, Carmine
    Aliprandi, Alberto
    Parafioriti, Antonina
    Luzzati, Alessandro
    Biagini, Roberto
    Mainardi, Luca
    Sconfienza, Luca Maria
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [26] Deciphering the molecular fingerprint of haemoglobin in lung cancer: A new strategy for early diagnosis using two-trace two-dimensional correlation near infrared spectroscopy (2T2D-NIRS) and machine learning techniques
    Fang, Renjie
    Wang, Jialiang
    Han, Xin
    Li, Xiangxian
    Tong, Jingjing
    Qin, Yusheng
    Gao, Minguang
    Huang, Xiang
    Jia, Min
    Wang, Hongzhi
    Deng, Qingmei
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2025, 337
  • [27] Fabrication of 1D/2D Au nanofiber/MIL-101(Cr)-NH2 composite for selective electrochemical detection of caffeic acid: Predicting sensor performance by machine learning and investigating the porosity using AI and computer vision-based image analysis
    Kavya, K. V.
    Kumar, Raju Suresh
    Kumar, R. T. Rajendra
    Ramesh, Sivalingam
    Yang, Woochul
    Kakani, Vijay
    Haldorai, Yuvaraj
    MICROCHEMICAL JOURNAL, 2024, 200