In Vivo Monitoring of GABA by N-Doped Carbon Quantum Dots

被引:0
|
作者
Raut, Jiko [1 ]
Sherpa, Rinchen D. [2 ]
Jana, Santosh K. [3 ]
Mandal, Santi M. [4 ]
Mandal, Sukhendu [3 ]
Hui, Subhra P. [2 ]
Sahoo, Prithidipa [1 ]
机构
[1] Visva Bharati Univ, Dept Chem, Santini Ketan 731235, India
[2] Univ Calcutta, SN Pradhan Ctr Neurosci, Kolkata 700019, India
[3] Univ Calcutta, Dept Microbiol, Kolkata 700019, India
[4] Indian Inst Technol Kharagpur, Dept Biotechnol, Kharagpur 721302, India
关键词
neurotransmitter; N-doped carbon quantum dots; nanosensor; GABA; endogenous GABA monitoring; brainstem tissues of zebrafish; cell imaging; GAMMA-AMINOBUTYRIC-ACID; EFFECTIVE FLUORESCENT-PROBES; MICRODIALYSIS SAMPLES; LIQUID-CHROMATOGRAPHY; SENSOR; GLUTAMATE; NANODOTS;
D O I
10.1021/acsanm.4c05097
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
gamma-Aminobutyric acid (GABA) is one of the primary inhibitory neurotransmitters and encompasses 10-30% of the neurons in the CNS. Fundamentally, GABA is responsible for decreasing the nervous system activity by inhibiting the action potential and hence excitotoxicity of neurons. Owing to these neuroregulatory features, GABA has been known to be involved in numerous diseases such as schizophrenia, epilepsy, and other psychiatric conditions. Therefore, from a neuroanatomical as well as a pathological perspective, the visual localization and relative abundance research of neurotransmitters is of great importance. The intricacies of GABA release from neurons are still largely unknown; hence, it will be necessary to analyze endogenous GABA concentrations. Here, we synthesized nitrogen-doped carbon quantum dots (N-CQDs), which employ a turn-off mechanism to detect GABA in vivo. High-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX) have been used to verify the structural characteristics and size of the N-CQDs. Using the Stern-Volmer equation, UV-vis and fluorescence spectroscopies, and time-correlated single-photon counting (TCSPC), the mechanism of fluorescence quenching was thoroughly explained. Moreover, 0.16 mu M was determined to be the N-CQD detection limit. Furthermore, exogenous GABA in human cell lines and endogenous GABA in the zebrafish forebrain (telencephalon) and midbrain (optic tectum) were both successfully detected by our sensor. Thus, this probe may be used as a competent nanosensor to detect comparative GABA levels among healthy and diseased animal models with GABA neurotransmitter imbalance and neurodegeneration.
引用
收藏
页码:23278 / 23287
页数:10
相关论文
共 50 条
  • [1] Fluorescent N-Doped Carbon Dots as in Vitro and in Vivo Nanothermometer
    Yang, Yanmei
    Kong, Weiqian
    Li, Hao
    Liu, Juan
    Yang, Manman
    Huang, Hui
    Liu, Yang
    Wang, Zhongyang
    Wang, Zhiqiang
    Sham, Tsun-Kong
    Zhong, Jun
    Wang, Chao
    Liu, Zhuang
    Lee, Shuit-Tong
    Kang, Zhenhui
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (49) : 27324 - 27330
  • [2] The importance of surface states in N-doped carbon quantum dots
    Dsouza, Slavia Deeksha
    Buerkle, Marius
    Brunet, Paul
    Maddi, Chiranjeevi
    Padmanaban, Dilli Babu
    Morelli, Alessio
    Payam, Amir Farokh
    Maguire, Paul
    Mariotti, Davide
    Svrcek, Vladimir
    CARBON, 2021, 183 (183) : 1 - 11
  • [3] N-Doped Carbon Quantum Dots as Fluorescent Bioimaging Agents
    Ou, Shih-Fu
    Zheng, Ya-Yun
    Lee, Sin-Jen
    Chen, Shyi-Tien
    Wu, Chien-Hui
    Hsieh, Chien-Te
    Juang, Ruey-Shin
    Peng, Pei-Zhen
    Hsueh, Yi-Huang
    CRYSTALS, 2021, 11 (07)
  • [4] Hierarchical carbon material of N-doped carbon quantum dots in-situ formed on N-doped carbon nanotube for efficient oxygen reduction
    Huang, Yanting
    Liao, Wugang
    APPLIED SURFACE SCIENCE, 2019, 495
  • [5] Synthesis and Acidizing Corrosion Inhibition Performance of N-Doped Carbon Quantum Dots
    Lv, Jie
    Fu, Luoping
    Zeng, Bo
    Tang, Mingjin
    Li, Jianbo
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2019, 92 (06) : 848 - 856
  • [6] Synthesis and Acidizing Corrosion Inhibition Performance of N-Doped Carbon Quantum Dots
    Jie Lv
    Luoping Fu
    Bo Zeng
    Mingjin Tang
    Jianbo Li
    Russian Journal of Applied Chemistry, 2019, 92 : 848 - 856
  • [7] Bio-safety assessment of carbon quantum dots, N-doped and folic acid modified carbon quantum dots: A systemic comparison
    Shu Zhang
    Xibo Pei
    Yiyuan Xu
    Jingyuan Xiong
    Jian Wang
    Chinese Chemical Letters, 2020, 31 (06) : 1654 - 1659
  • [8] Bio-safety assessment of carbon quantum dots, N-doped and folic acid modified carbon quantum dots: A systemic comparison
    Zhang, Shu
    Pei, Xibo
    Xue, Yiyuan
    Xiong, Jingyuan
    Wang, Jian
    CHINESE CHEMICAL LETTERS, 2020, 31 (06) : 1654 - 1659
  • [9] Hydroxyapatite supported N-doped carbon quantum dots for visible-light photocatalysis
    Chang, Q.
    Li, K. K.
    Hu, S. L.
    Dong, Y. G.
    Yang, J. L.
    MATERIALS LETTERS, 2016, 175 : 44 - 47
  • [10] High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging
    Yi, Zhihui
    Li, Ximing
    Zhang, Hongyu
    Ji, Xiuling
    Sun, Wei
    Yu, Yuexin
    Liu, Yinan
    Huang, Jiaxing
    Sarshar, Zahra
    Sain, Mohini
    TALANTA, 2021, 222