Fractal dimensions of jammed packings with power-law particle size distributions in two and three dimensions

被引:0
|
作者
Monti, Joseph M. [1 ]
Srivastava, Ishan [2 ]
Silbert, Leonardo E. [3 ]
Lechman, Jeremy B. [1 ]
Grest, Gary S. [1 ]
机构
[1] Sandia National Laboratories, Albuquerque,NM,87185, United States
[2] Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley,CA,94720, United States
[3] School of Math, Science, and Engineering, Central New Mexico Community College, Albuquerque,NM,87106, United States
来源
arXiv | 2023年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Particle size - Particle size analysis
引用
收藏
相关论文
共 50 条
  • [31] FRACTAL DIMENSIONS OF SOIL AGGREGATE-SIZE DISTRIBUTIONS CALCULATED BY NUMBER AND MASS
    PERFECT, E
    RASIAH, V
    KAY, BD
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1992, 56 (05) : 1407 - 1409
  • [32] FRACTAL DIMENSIONS OF AGGREGATES DETERMINED FROM STEADY-STATE SIZE DISTRIBUTIONS
    JIANG, Q
    LOGAN, BE
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1991, 25 (12) : 2031 - 2038
  • [33] Power-Law Distributions of Component Size in General Software Systems
    Hatton, Les
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2009, 35 (04) : 566 - 572
  • [34] Confinement limit of a Dirac particle in two and three dimensions
    Toyama, F. M.
    Nogami, Y.
    PHYSICS LETTERS A, 2010, 374 (37) : 3838 - 3840
  • [35] The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions (vol 17, pg 9901, 2021)
    Wang, Dong
    Treado, John D.
    Boromand, Arman
    Norwick, Blake
    Murrell, Michael P.
    Shattuck, Mark D.
    O'Hern, Corey S.
    SOFT MATTER, 2022, 18 (19) : 3815 - 3815
  • [36] On the Child–Langmuir law in one, two, and three dimensions
    Lau, Y.Y.
    Li, Dion
    Chernin, David P.
    arXiv, 2023,
  • [37] POWER-LAW DISTRIBUTIONS BASED ON EXPONENTIAL DISTRIBUTIONS: LATENT SCALING, SPURIOUS ZIPF'S LAW, AND FRACTAL RABBITS
    Chen, Yanguang
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (02)
  • [38] A modified method for estimating fine and coarse fractal dimensions of soil particle size distributions based on laser diffraction analysis
    Peng, Hongtao
    Horton, Robert
    Lei, Tingwu
    Dai, Zhenchao
    Wang, Xiangping
    JOURNAL OF SOILS AND SEDIMENTS, 2015, 15 (04) : 937 - 948
  • [39] A modified method for estimating fine and coarse fractal dimensions of soil particle size distributions based on laser diffraction analysis
    Hongtao Peng
    Robert Horton
    Tingwu Lei
    Zhenchao Dai
    Xiangping Wang
    Journal of Soils and Sediments, 2015, 15 : 937 - 948
  • [40] Densest arrangement of frictionless polydisperse sphere packings with a power-law grain size distribution
    Oquendo-Patino, William Fernando
    Estrada, Nicolas
    GRANULAR MATTER, 2020, 22 (04)