Electrifying waste textiles: Transforming fabric scraps into high-performance triboelectric nanogenerators for biomechanical energy harvesting

被引:1
|
作者
Amini, Sebghatullah [1 ]
Ahmed, Rumana Farheen Sagade Muktar [1 ]
Kumar, Santosh [2 ]
Ankanathappa, Sangamesha Madanahalli [3 ]
Sannathammegowda, Krishnaveni [1 ]
机构
[1] Univ Mysore, Dept Studies Phys, Mysore 570006, Karnataka, India
[2] Reg Inst Educ Bhopal, Dept Educ Sci & Math, Bhopal, Madhya Pradesh, India
[3] Natl Inst Engn, Dept Chem, Mysuru 570008, Karnataka, India
关键词
Triboelectric nanogenerators; Textile fabrics; Energy harvesting; Self-powered devices; Wearable technology; Waste management;
D O I
10.1016/j.wasman.2024.10.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Textiles are an integral part of daily life globally, but their widespread use leads to significant waste generation. Repurposing these discarded fabrics for energy harvesting offers a sustainable solution to both energy demand and textile waste management. In this study, Textile-based Triboelectric Nanogenerators (T-TENGs) were developed using recycled cloth as tribopositive layers and polyvinyl chloride (PVC) film as the tribonegative layer, with aluminum foil tape serving as electrodes. Five different recycled textiles were evaluated, and Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analysis revealed a correlation between yarn structure and carbon content, leading to enhanced triboelectric performance. Silk-based TENG (STENG) demonstrated the highest output, with 320.76 V and 8.73 mu A, while exhibiting stable performance over 10,000 cycles. Practical applications were explored by integrating T-TENGs into shoe insoles for energy harvesting during walking and jumping, with rayon-based TENG generating up to 208.52 V on a PVC coil mat. This work highlights the dual benefits of waste reduction and sustainable energy applications, making a compelling case for advanced technologies where recycled textiles function as frictional materials to harvest mechanical energy from human motion and convert it into electrical energy for use in flexible sensors and wearable devices.
引用
收藏
页码:477 / 485
页数:9
相关论文
共 50 条
  • [41] Construction of MXene/PDMS-Based Triboelectric Nanogenerators for High-Performance Cathodic Protection
    Xu, Hui
    Wang, Xiutong
    Niu, Jianmin
    Nan, Youbo
    Pu, Jiayan
    Zhou, Hui
    Duan, Jizhou
    Huang, Yanliang
    Hou, Baorong
    ADVANCED MATERIALS INTERFACES, 2022, 9 (11):
  • [42] MOF-808 Enhanced MXene Tribopositive Layer for High-Performance Triboelectric Nanogenerators
    Memon, Muzamil Hussain
    Mir, Amna
    Rehman, Fahad
    Amjad, Um-e-Salma
    Mustafa, Maria
    ENERGY TECHNOLOGY, 2025,
  • [43] Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators
    Kim, Dong Wook
    Lee, Ju Hyun
    You, Insang
    Kim, Jin Kon
    Jeong, Unyong
    NANO ENERGY, 2018, 50 : 192 - 200
  • [44] Contact Electrification at Adhesive Interface: Boosting Charge Transfer for High-Performance Triboelectric Nanogenerators
    Shi, Kunming
    Chai, Bin
    Zou, Haiyang
    Wen, Zhen
    He, Meng
    Chen, Jie
    Jiang, Pingkai
    Huang, Xingyi
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (50)
  • [45] Enhancing Triboelectric Nanogenerators Performance with MXene-Silicone Nanocomposites: A Leap Forward in Energy Harvesting and Touch-Sensitive Technologies
    Madathil, Navaneeth
    Potu, Supraja
    Pani, Jitesh
    Bochu, Lakshakoti
    Babu, Anjaly
    Borkar, Hitesh
    Kodali, Prakash
    Khanapuram, Uday Kumar
    Rajaboina, Rakesh Kumar
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (08) : 5563 - 5574
  • [46] Flame-retardant textile based triboelectric nanogenerators for energy harvesting and high-temperature sensing
    Zhao, Junwei
    Wang, Yupeng
    Chen, Jian
    Wang, Yanzhe
    Hou, Chunli
    Wang, Yujiang
    NANO ENERGY, 2024, 131
  • [47] Broadband and Multi-Cylinder-Based Triboelectric Nanogenerators for Mechanical Energy Harvesting with High Space Utilization
    Chen, Xu
    Cao, Bao
    Yang, Chao
    Zhang, Haonan
    Fang, Lin
    Chen, Chen
    Wang, Zixun
    He, Wen
    Wang, Peihong
    MATERIALS, 2023, 16 (08)
  • [48] Double Nanocomposites-Based Piezoelectric Nanogenerators for High-Performance Energy Harvester
    Park, Geung Gyu
    Lee, Eun Jung
    Jung, Sungmook
    Jeong, Sunho
    Kim, Hyun-Suk
    Choi, Youngmin
    Lee, Su Yeon
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (07) : 8835 - 8843
  • [49] TOCN/copper calcium titanate composite aerogel films as high-performance triboelectric materials for energy harvesting
    Song, Yiheng
    Liu, Man
    Bao, Jiangkai
    Hu, Yang
    Xu, Menghan
    Yang, Zhibo
    Yang, Quanling
    Cai, Haopeng
    Xiong, Chuanxi
    Shi, Zhuqun
    CARBOHYDRATE POLYMERS, 2022, 298
  • [50] A graphene nanoplatelets-based high-performance, durable triboelectric nanogenerator for harvesting the energy of human motion
    Shabbir, Irfan
    Lee, Dong-Min
    Choo, Dong Chul
    Lee, Yong Hun
    Park, Kwan Kyu
    Yoo, Keon Ho
    Kim, Sang-Woo
    Kim, Tae Whan
    ENERGY REPORTS, 2022, 8 : 1026 - 1033