Electrifying waste textiles: Transforming fabric scraps into high-performance triboelectric nanogenerators for biomechanical energy harvesting

被引:1
|
作者
Amini, Sebghatullah [1 ]
Ahmed, Rumana Farheen Sagade Muktar [1 ]
Kumar, Santosh [2 ]
Ankanathappa, Sangamesha Madanahalli [3 ]
Sannathammegowda, Krishnaveni [1 ]
机构
[1] Univ Mysore, Dept Studies Phys, Mysore 570006, Karnataka, India
[2] Reg Inst Educ Bhopal, Dept Educ Sci & Math, Bhopal, Madhya Pradesh, India
[3] Natl Inst Engn, Dept Chem, Mysuru 570008, Karnataka, India
关键词
Triboelectric nanogenerators; Textile fabrics; Energy harvesting; Self-powered devices; Wearable technology; Waste management;
D O I
10.1016/j.wasman.2024.10.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Textiles are an integral part of daily life globally, but their widespread use leads to significant waste generation. Repurposing these discarded fabrics for energy harvesting offers a sustainable solution to both energy demand and textile waste management. In this study, Textile-based Triboelectric Nanogenerators (T-TENGs) were developed using recycled cloth as tribopositive layers and polyvinyl chloride (PVC) film as the tribonegative layer, with aluminum foil tape serving as electrodes. Five different recycled textiles were evaluated, and Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analysis revealed a correlation between yarn structure and carbon content, leading to enhanced triboelectric performance. Silk-based TENG (STENG) demonstrated the highest output, with 320.76 V and 8.73 mu A, while exhibiting stable performance over 10,000 cycles. Practical applications were explored by integrating T-TENGs into shoe insoles for energy harvesting during walking and jumping, with rayon-based TENG generating up to 208.52 V on a PVC coil mat. This work highlights the dual benefits of waste reduction and sustainable energy applications, making a compelling case for advanced technologies where recycled textiles function as frictional materials to harvest mechanical energy from human motion and convert it into electrical energy for use in flexible sensors and wearable devices.
引用
收藏
页码:477 / 485
页数:9
相关论文
共 50 条
  • [41] Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators
    Nurmakanov, Yerzhan
    Kalimuldina, Gulnur
    Nauryzbayev, Galymzhan
    Adair, Desmond
    Bakenov, Zhumabay
    NANOSCALE RESEARCH LETTERS, 2021, 16 (01):
  • [42] Enhanced Energy Harvesting Performance of Triboelectric Nanogenerators via Dielectric Property Regulation
    Han, Jin
    Wang, Yongfa
    Ma, Yanran
    Wang, Chunchang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (26) : 31795 - 31802
  • [43] Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators
    Deng, Weili
    Zhou, Yihao
    Zhao, Xun
    Zhang, Songlin
    Zou, Yongjiu
    Xu, Jing
    Yeh, Min-Hsin
    Guo, Hengyu
    Chen, Jun
    ACS NANO, 2020, 14 (07) : 9050 - 9058
  • [44] Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators
    Jin, Long
    Xiao, Xiao
    Deng, Weili
    Nashalian, Ardo
    He, Daren
    Raveendran, Vidhur
    Yan, Cheng
    Su, Hai
    Chu, Xiang
    Yang, Tao
    Li, Wen
    Yang, Weiqing
    Chen, Jun
    NANO LETTERS, 2020, 20 (09) : 6404 - 6411
  • [45] Design and construction of high-performance triboelectric nanogenerators and their biomedical applications
    Zhou, Tianxiang
    Wei, Jingyi
    Zhang, Xinyue
    Wu, Liang
    Guo, Sufang
    An, Qi
    Feng, Zeguo
    Guo, Kaikai
    APPLIED MATERIALS TODAY, 2025, 42
  • [46] Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators
    Yerzhan Nurmakanov
    Gulnur Kalimuldina
    Galymzhan Nauryzbayev
    Desmond Adair
    Zhumabay Bakenov
    Nanoscale Research Letters, 16
  • [47] Energy from Waste: Triboelectric Nanogenerators from Fully Fabric Materials for Smart Textiles. An Introductory Activity for Fine Arts and Design Students
    Collado, Ignacio
    Saez, Jose Sanchez del Rio
    de la Vega, Jimena
    Vazquez-Lopez, Antonio
    JOURNAL OF CHEMICAL EDUCATION, 2024,
  • [48] Empowering high-performance triboelectric nanogenerators: advanced materials strategies
    Liu, Xiaoru
    Zhao, Zhihao
    Wang, Jie
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [49] Perspectives of Material Optimization Strategies for High-Performance Triboelectric Nanogenerators
    Ji, Haifeng
    Sun, Cong
    Sun, Xuhui
    Wen, Zhen
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (05)
  • [50] Constructing high-efficiency stretchable-breathable triboelectric fabric for biomechanical energy harvesting and intelligent sensing
    Xu, Yunlong
    Bai, Zhiqing
    Xu, Guangbiao
    NANO ENERGY, 2023, 108