Electrifying waste textiles: Transforming fabric scraps into high-performance triboelectric nanogenerators for biomechanical energy harvesting

被引:1
|
作者
Amini, Sebghatullah [1 ]
Ahmed, Rumana Farheen Sagade Muktar [1 ]
Kumar, Santosh [2 ]
Ankanathappa, Sangamesha Madanahalli [3 ]
Sannathammegowda, Krishnaveni [1 ]
机构
[1] Univ Mysore, Dept Studies Phys, Mysore 570006, Karnataka, India
[2] Reg Inst Educ Bhopal, Dept Educ Sci & Math, Bhopal, Madhya Pradesh, India
[3] Natl Inst Engn, Dept Chem, Mysuru 570008, Karnataka, India
关键词
Triboelectric nanogenerators; Textile fabrics; Energy harvesting; Self-powered devices; Wearable technology; Waste management;
D O I
10.1016/j.wasman.2024.10.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Textiles are an integral part of daily life globally, but their widespread use leads to significant waste generation. Repurposing these discarded fabrics for energy harvesting offers a sustainable solution to both energy demand and textile waste management. In this study, Textile-based Triboelectric Nanogenerators (T-TENGs) were developed using recycled cloth as tribopositive layers and polyvinyl chloride (PVC) film as the tribonegative layer, with aluminum foil tape serving as electrodes. Five different recycled textiles were evaluated, and Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analysis revealed a correlation between yarn structure and carbon content, leading to enhanced triboelectric performance. Silk-based TENG (STENG) demonstrated the highest output, with 320.76 V and 8.73 mu A, while exhibiting stable performance over 10,000 cycles. Practical applications were explored by integrating T-TENGs into shoe insoles for energy harvesting during walking and jumping, with rayon-based TENG generating up to 208.52 V on a PVC coil mat. This work highlights the dual benefits of waste reduction and sustainable energy applications, making a compelling case for advanced technologies where recycled textiles function as frictional materials to harvest mechanical energy from human motion and convert it into electrical energy for use in flexible sensors and wearable devices.
引用
收藏
页码:477 / 485
页数:9
相关论文
共 50 条
  • [31] Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators
    Xu, Jing
    Zou, Yongjiu
    Nashalian, Ardo
    Chen, Jun
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [32] Dynamical charge transfer for high-performance triboelectric nanogenerators
    Cui, Xin
    Zhang, Yan
    NANO SELECT, 2020, 1 (05): : 461 - 470
  • [33] High-Performance All-Textile Triboelectric Nanogenerator toward Intelligent Sports Sensing and Biomechanical Energy Harvesting
    Zheng, Zhipeng
    Ma, Xiongchao
    Lu, Mingyu
    Yin, Hao
    Jiang, Lei
    Guo, Yiping
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (08) : 10746 - 10755
  • [34] Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors
    Kai Dong
    Zhong Lin Wang
    Journal of Semiconductors, 2021, 42 (10) : 61 - 74
  • [35] Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors
    Dong, Kai
    Wang, Zhong Lin
    JOURNAL OF SEMICONDUCTORS, 2021, 42 (10)
  • [36] Diamond-Structured Fabric-Based Triboelectric Nanogenerators for Energy Harvesting and Healthcare Application
    Ahmed, Taosif
    Gao, Yuanyuan
    So, Mei Yi
    Tan, Di
    Lu, Jian
    Zhang, Junze
    Wang, Qian
    Liu, Xinlong
    Xu, Bingang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (48)
  • [37] Multilayered fiber-based triboelectric nanogenerator with high performance for biomechanical energy harvesting
    Li, Zhaoling
    Zhu, Miaomiao
    Qiu, Qian
    Yu, Jianyong
    Ding, Bin
    NANO ENERGY, 2018, 53 : 726 - 733
  • [38] Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting
    Li, Zhaoling
    Shen, Jiali
    Abdalla, Ibrahim
    Yu, Jianyong
    Ding, Bin
    NANO ENERGY, 2017, 36 : 341 - 348
  • [39] PDMS Surface-Area Optimization for High-Performance Oscillatory Motion Harvesting Pendulum-Type Triboelectric Nanogenerators for Energy Harvesting and Sensor Applications
    Jang, Jong Beom
    Graham, Sontyana Adonijah
    Yu, Jae Su
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (12) : 5933 - 5940
  • [40] Highly stretchable hydroxyapatite bionanocomposite for high-performance triboelectric nanogenerators
    Luu, Thien Trung
    Huynh, Nghia Dinh
    Kim, Hakjeong
    Lin, Zong-Hong
    Choi, Dukhyun
    NANOSCALE, 2023, 15 (34) : 14205 - 14214