In Situ Growing CuO/ZIF-8 into Nickel Foam to Fabricate a Binder-Free Self-Supported Glucose Biosensor

被引:14
作者
Deng L. [1 ]
Fan S. [1 ]
Chen Y. [1 ]
Chen J. [1 ]
Mai Z. [1 ]
Xiao Z. [1 ]
机构
[1] Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu
基金
中国国家自然科学基金;
关键词
Copper oxides;
D O I
10.1021/acs.iecr.2c01298
中图分类号
学科分类号
摘要
A binder-free self-supported CuO/ZIF-8@NiF electrode is fabricated with CuO/ZIF-8 particles in situ growth in nickel foam pores. ZIF-8 is first assembled inside the nickel foam pores and then Cu2+ is adsorbed around the surface of ZIF-8 crystal, and finally reduced and oxidized to form CuO. Scanning electron microscopy indicates CuO is uniformly distributed on the surface of ZIF-8. The Cu element is significantly increased from 1.16 to 30.91 mg·g-1 under the existence of ZIF-8 from inductively coupled plasma results. The electrochemical analyses show that the electrochemical active surface area of the CuO/ZIF-8@NiF electrode can be increased two times while its electronic transport resistance can be reduced to one-seventh compared with the CuO/ZIF-8/NiF electrode with CuO/ZIF-8 binding on the substrate. The detection tests exhibit enhanced electrochemical properties with a sensitivity of 5640 μA·mM-1·cm-2, a low detection limitation of 0.1 μM, and a linear detection range from 0.5 to 120 μM. The biosensor presents good anti-interference property, stability, and a 101.08-104.53% recovery rate. © 2022 American Chemical Society.
引用
收藏
页码:7312 / 7321
页数:9
相关论文
共 30 条
[1]  
Chitare Y.M., Jadhav S.B., Pawaskar P.N., Magdum V.V., Gunjakar J.L., Lokhande C.D., Metal Oxide-Based Composites in Nonenzymatic Electrochemical Glucose Sensors, Ind. Eng. Chem. Res., 60, pp. 18195-18217, (2021)
[2]  
Song Y., Li X., Wei C., Fu J., Xu F., Tan H., Tang J., Wang L., A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks, Sci. Rep., 5, (2015)
[3]  
Wang N., Sun Q., Yu J., Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts, Adv. Mater., 31, (2019)
[4]  
Wang X., Wang Y., Ying Y., Recent Advances in Sensing Applications of Metal Nanoparticle/Metal-Organic Framework Composites, TrAC-Trend. Anal. Chem., 143, (2021)
[5]  
Qin Y., Xiao Z., Jian S., Wang Y., Fan S., Wang Y., Qiu B., Liu J., Wang Z., Wan Q., Deep-Permeation Nanocomposite Structure of ZIF-8 inside Porous Poly(tetrafluoroethylene) by Flow Synergistic Synthesis, Ind. Eng. Chem. Res., 58, pp. 23083-23092, (2019)
[6]  
Liu Y., Liu Z., Huang D., Cheng M., Zeng G., Lai C., Zhang C., Zhou C., Wang W., Jiang D., Wang H., Shao B., Metal or Metal-Containing Nanoparticle@MOF Nanocomposites as A Promising Type of Photocatalyst, Coordin. Chem. Rev., 388, pp. 63-78, (2019)
[7]  
Qin Y., Jian S., Bai K., Wang Y., Mai Z., Fan S., Qiu B., Chen Y., Wang Y., Xiao Z., Catalytic Membrane Reactor of Nano (Ag+ZIF-8)@Poly(tetrafluoroethylene) Built by Deep-Permeation Synthesis Fabrication, Ind. Eng. Chem. Res., 59, pp. 9890-9899, (2020)
[8]  
Luo X., Huang M., He D., Wang M., Zhang Y., Jiang P., Porous NiCo<sub>2</sub>O<sub>4</sub>Nanoarray-Integrated Binder-Free 3D Open Electrode Offers a Highly Efficient Sensing Platform for Enzyme-Free Glucose Detection, Analyst, 143, pp. 2546-2554, (2018)
[9]  
Ye B., Cao X., Zhao Q., Wang J., Electrodeposited NiFe2Se4 on Nickel Foam as a Binder-Free Electrode for High-Performance Asymmetric Supercapacitors, Ind. Eng. Chem. Res., 59, pp. 14163-14171, (2020)
[10]  
Hu S., Lin Y., Teng J., Wong W.L., Qiu B., In Situ Deposition of MOF-74(Cu) Nanosheet Arrays onto Carbon Cloth to Fabricate a Sensitive and Selective Electrocatalytic Biosensor and Its Application for the Determination of Glucose in Human Serum, Mikrochim. Acta, 187, pp. 670-679, (2020)