Research on the aerodynamic characteristics of electrically controlled rotor under Parallel Blade Vortex Interaction using Lattice Boltzmann Method

被引:0
作者
Wang, Lingzhi [1 ]
Su, Taoyong [1 ]
Li, Kewei [2 ]
Zhao, Bonan [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Gen Aviat, Nanchang 330063, Peoples R China
[2] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Peoples R China
关键词
Electrically controlled rotor (ECR); Lattice Boltzmann method; Trailing edge flap; Parallel blade vortex interaction; PRESSURE MEASUREMENTS; NUMERICAL-SIMULATION; AIRFOIL INTERACTION; MODEL;
D O I
10.1016/j.ast.2024.109631
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
An electrically controlled rotor (ECR), also known as a swashplateless rotor, employs a trailing edge flap (TEF) system for primary rotor control instead of a swashplate, demonstrating the significant potential in rotor vibration and noise reduction. To investigate the aerodynamic characteristics of the blade flap segment of the ECR under parallel blade vortex interaction, an aerodynamic analysis model based on the lattice Boltzmann method (LBM) is established using the D3Q27 lattice model. The model is validated against experimental data of both the airfoil with trailing edge flap and conventional airfoil under vortex interaction, showing that the LBM can effectively predict variations in aerodynamic loads under both conditions. Based on this model, the effects of different flap deflection angles and miss distances on the aerodynamic characteristics of the ECR under parallel BVI are analyzed. The results indicate that under strong vortex interaction, a region of flow separation forms due to the entrainment effect of the vortex and adverse pressure gradient. The small-scale vortex structure upstream of the flap can also be observed and is believed to contribute to the unsteady flow phenomena such as vortex structure splitting, development, and separation on the upper surface of the flap. The different flap deflection angles mainly affect the scale and type of vortex structures developed on the flap upper surface. As the miss distance increases, the interaction effect is significantly weakened compared to strong vortex interaction. However, as the vortex moves downstream along the airfoil lower surface, it entrains vorticity from the lower surface, ultimately forming a negative pressure region on the lower surface of the flap. The different flap deflection angles will influence the structural characteristics during the downstream motion of the vortex, which changes the size of the negative pressure region, causing differences in the magnitude of the variations in aerodynamic parameters.
引用
收藏
页数:21
相关论文
共 57 条
[1]  
Baeder J.D., 1986, Acoustic propagation using computational fluid dynamics
[2]  
BAGAI A, 1993, EXP FLUIDS, V15, P431, DOI 10.1007/BF00191786
[3]  
Bhagwat Mahendra J., 2002, ANN FOR P AM HEL SOC, V58
[4]   Measurements of bound and wake circulation on a helicopter rotor [J].
Bhagwat, MJ ;
Leishman, JG .
JOURNAL OF AIRCRAFT, 2000, 37 (02) :227-234
[5]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[6]   EXPERIMENTAL-OBSERVATIONS OF 2-DIMENSIONAL BLADE-VORTEX INTERACTION [J].
BOOTH, ER .
AIAA JOURNAL, 1990, 28 (08) :1353-1359
[7]   Lattice-Boltzmann calculations of rotor aeroacoustics in transitional boundary layer regime [J].
Casalino, Damiano ;
Romani, Gianluca ;
Zhang, Raoyang ;
Chen, Hudong .
AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 130
[8]   Definition of a benchmark for low Reynolds number propeller aeroacoustics [J].
Casalino, Damiano ;
Grande, Edoardo ;
Romani, Gianluca ;
Ragni, Daniele ;
Avallone, Francesco .
AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 113
[9]   Extended Boltzmann kinetic equation for turbulent flows [J].
Chen, HD ;
Kandasamy, S ;
Orszag, S ;
Shock, R ;
Succi, S ;
Yakhot, V .
SCIENCE, 2003, 301 (5633) :633-636
[10]   Unsteady pressure measurements for parallel vortex-airfoil interaction at low speed [J].
Chen, JM ;
Chang, DM .
JOURNAL OF AIRCRAFT, 1997, 34 (03) :330-336