Effect of quenching and solubilization temperature on thermal, electrical, mechanical, and magnetic properties of a Heusler CuAlMnTiB alloy

被引:0
作者
Falcão, Gabriely M.S. [1 ]
de Medeiros, Fabiana Kelly [2 ]
Correa, Marcio Assolin [3 ]
Bohn, Felipe [3 ]
dos Passos, Tibério Andrade [1 ,4 ]
Torquato, Ramon Alves [1 ,4 ]
de Lima, Bruno Alessandro Guedes [5 ]
de Araujo Júnior, Francisco Wlaudy Erimar Lourenço [2 ]
de Oliveira, Danniel Ferreira [1 ,4 ]
机构
[1] Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal da Paraíba, PB, João Pessoa
[2] Programa de Pós-Graduação em Engenharia de Mecânica, Universidade Federal da Paraíba, PB, João Pessoa
[3] Departamento de Física, Universidade Federal do Rio Grande do Norte, RN, Natal
[4] Departamento de Engenharia de Materiais, Universidade Federal da Paraíba, PB, João Pessoa
[5] Departamento de Engenharia Mecânica, Universidade Federal da Paraíba, PB, João Pessoa
来源
Journal of Alloys and Metallurgical Systems | 2024年 / 8卷
关键词
Electrical properties; Magnetic properties; Quenching; Solubilization temperature; Thermal properties;
D O I
10.1016/j.jalmes.2024.100114
中图分类号
学科分类号
摘要
We report a systematic investigation of the effect of quenching and solubilization temperature on the thermal, electrical, mechanical, and magnetic properties of the Heusler alloy CuAlMnTiB. The experimental procedure and the results obtained demonstrated that the tempering process can effectively adjust the physical properties of the CuAlMnTiB alloy. This treatment led to an increase in electrical resistivity, which went from 2.34×10−7Ω∙m in the raw melt sample (TBF) to 4.49×10−7Ω∙m in the sample quenching at 850 ºC (T850), in addition to an increase in the Curie temperature, from 297.5 ºC (TBF) to 305.85 ºC (T850). A decrease in remanent magnetization from 2.74 emu/g (TBF) to 0.31 emu/g (T850) and in the coercive field, which reduced from 54.15 Oe in the TBF to 4.55 Oe in the T850, was also observed. This makes tempering a viable alternative to adapt these properties to various technological applications, without requiring changes in the alloy composition. Here we were able to reach structural and magnetic properties compatible with those reported in the literature for CuMnAl alloys of different compositions. © 2024 The Authors
引用
收藏
相关论文
共 43 条
[1]  
Ales A., Lanzini F., Mechanical and thermodynamical properties of β − Cu − Al − Mn alloys along the Cu3Al → Cu2AlMn compositional line, Solid State Commun., 319, (2020)
[2]  
Idrissi S., Ziti S., Labrim H., Bahmad L., Half-metallicity and magnetism in the full heusler alloy Fe2MnSn with L21 and XA stability ordering phases, J. Low. Temp. Phys., 202, pp. 343-359, (2021)
[3]  
Jabar A., Bahmad L., Benyoussef S., Study of physical properties of the quaternary full-Heusler alloy: FeMnCuSi, J. Alloy. Compd., 947, (2023)
[4]  
Singh M., Saini H.S., Thakur J., Reshak A.H., Kashyap M.K., Disorder dependent half-metallicity in Mn2CoSi inverse Heusler alloy, J. Solid State Chem., 208, pp. 71-77, (2013)
[5]  
Idrissi S., Labrim H., Ziti S., Bahmad L., A DFT study of the equiatomic quaternary Heusler alloys ZnCdXMn (X=Pd, Ni or Pt), Solid State Commun., 331, (2021)
[6]  
Singh M., Saini H.S., Thakur J., Reshak A.H., Kashyap M.K., Electronic structure, magnetism and robust half-metallicity of new quaternary Heusler alloy FeCrMnSb, J. Alloy. Compd., 580, pp. 201-204, (2013)
[7]  
Obrado E., Manosa L., Planes A., Romero R., Somoza A., Quenching effects in Cu–Al–Mn shape memory alloy, Mater. Sci. Eng.: A, 273-275, (1999)
[8]  
Vilanova Vidal E., Schneider H., Jakob G., Influence of disorder on anomalous Hall effect for Heusler compounds, Phys. Rev. B, 83, (2011)
[9]  
de Souza Silva F., Correa M.A., Bohn F., Bezerra da Silva R., dos Passos T.A., Torquato R.A., Et al., Effect of Nb doping on NiMnSn Heusler alloys: Mechanical, structural, and magnetic properties modifications, J. Mater. Res. Technol., 26, pp. 5167-5176, (2023)
[10]  
Cheng P., Zhou Z., Chen J., Li Z., Yang B., Xu K., Et al., Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy, J. Mater. Sci. Technol., 94, pp. 47-52, (2021)