Self-Supervised Interactive Image Segmentation

被引:2
作者
Shi, Qingxuan [1 ,2 ]
Li, Yihang [1 ,2 ]
Di, Huijun [3 ]
Wu, Enyi [1 ,2 ]
机构
[1] Hebei Univ, Hebei Machine Vis Engn Res Ctr, Baoding 071000, Peoples R China
[2] Hebei Univ, Sch Cyber Secur & Comp, Baoding 071000, Peoples R China
[3] Beijing Inst Technol, Sch Comp Sci, Beijing 100811, Peoples R China
关键词
Image segmentation; Feature extraction; Task analysis; Medical diagnostic imaging; Training; Adaptation models; Annotations; Interactive image segmentation; self-supervised learning; test-time adaptation; generalization; NETWORKS; MRI;
D O I
10.1109/TCSVT.2023.3295062
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although interactive image segmentation techniques have made significant progress, supervised learning-based methods rely heavily on large-scale labeled data which is difficult to obtain in certain domains such as medicine, biology, etc. Models trained on natural images also struggle to achieve satisfactory results when directly applied to these domains. To solve this dilemma, we propose a Self-supervised Interactive Segmentation (SIS) method that achieves superior generalization performance. By clustering features from unlabeled data, we obtain classifiers that assign pseudo-labels to pixels in images. After refinement by super-pixel voting, these pseudo-labels are then used to train our segmentation network. To enable our network to better adapt to cross-domain images, we introduce correction learning and anti-forgetting regularization to conduct test-time adaptation. Our experiment results on five datasets show that our approach significantly outperforms other interactive segmentation methods across natural image datasets in the same conditions and achieves even better performance than some supervised methods when across to medical image domain. The code and models are available at https://github.com/leal0110/SIS.
引用
收藏
页码:6797 / 6808
页数:12
相关论文
共 100 条
[81]   Exploring Sub-Action Granularity for Weakly Supervised Temporal Action Localization [J].
Wang, Binglu ;
Zhang, Xun ;
Zhao, Yongqiang .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) :2186-2198
[82]   POLO: Learning Explicit Cross-Modality Fusion for Temporal Action Localization [J].
Wang, Binglu ;
Yang, Le ;
Zhao, Yongqiang .
IEEE SIGNAL PROCESSING LETTERS, 2021, 28 :503-507
[83]  
Wang Dequan, 2021, INT C LEARNING REPRE, DOI DOI 10.48550/ARXIV.2006.10726
[84]   DeeplGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation [J].
Wang, Guotai ;
Zuluaga, Maria A. ;
Li, Wenqi ;
Pratt, Rosalind ;
Patel, Premal A. ;
Aertsen, Michael ;
Doel, Tom ;
David, Anna L. ;
Deprest, Jan ;
Ourselin, Sebastien ;
Vercauteren, Tom .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (07) :1559-1572
[85]   Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning [J].
Wang, Guotai ;
Li, Wenqi ;
Zuluaga, Maria A. ;
Pratt, Rosalind ;
Patel, Premal A. ;
Aertsen, Michael ;
Doel, Tom ;
David, Anna L. ;
Deprest, Jan ;
Ourselin, Sebastien ;
Vercauteren, Tom .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (07) :1562-1573
[86]   Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views [J].
Wang, Guotai ;
Zuluaga, Maria A. ;
Pratt, Rosalind ;
Aertsen, Michael ;
Doel, Tom ;
Klusmann, Maria ;
David, Anna L. ;
Deprest, Jan ;
Vercauteren, Tom ;
Ourselin, Sebastien .
MEDICAL IMAGE ANALYSIS, 2016, 34 :137-147
[87]  
Wang WG, 2022, Arxiv, DOI [arXiv:2209.07383, DOI 10.48550/ARXIV.2209.07383]
[88]   Exploring Cross-Image Pixel Contrast for Semantic Segmentation [J].
Wang, Wenguan ;
Zhou, Tianfei ;
Yu, Fisher ;
Dai, Jifeng ;
Konukoglu, Ender ;
Van Gool, Luc .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :7283-7293
[89]  
Xu N, 2017, Arxiv, DOI arXiv:1707.00243
[90]   Deep Interactive Object Selection [J].
Xu, Ning ;
Price, Brian ;
Cohen, Scott ;
Yang, Jimei ;
Huang, Thomas .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :373-381