Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact

被引:0
|
作者
Zhang, Rongrong [1 ,2 ]
Shen, Yonghui [1 ]
Ma, Dongdong [1 ,2 ]
Ping, Qi [1 ,2 ]
Yang, Yi [1 ]
机构
[1] School of Civil Engineering and Architecture, Anhui University of Science and Technology, Anhui, Huainan,232001, China
[2] State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Anhui, Huainan,232001, China
来源
关键词
Fracture mechanics - Shock waves - Stress-strain curves - Thawing;
D O I
10.11883/bzycj-2023-0449
中图分类号
学科分类号
摘要
To study the strength, deformation characteristic and damage mechanism of freeze-thaw treated rock mass under the action of cyclic dynamic disturbance, the cyclic impact tests of freeze-thaw treated red sandstone under two kinds of impact pressure were carried out to investigate the effects of cyclic impact number and freeze-thaw number on stress wave propagation, dynamic stress-strain curve, peak stress, and peak strain. In addition, the calculation method of cumulative damage factor, which can comprehensive consider the effects of cyclic impact and freeze-thaw, is proposed based on the Lemaitre strain equivalence principle. Finally, the microstructure characteristics of red sandstone after freeze-thaw and cyclic impact are analyzed in detail. Results show that red sandstone specimens treated with different freeze-thaw number show tensile failure mode under cyclic impact load. The cyclic impact number that red sandstone specimen can withstand is negatively correlated with freeze-thaw cycle number, and red sandstone specimen after 75 freeze-thaw cycles treatments reaches the failure state after the first impact loading. Moreover, the cyclic impact number mainly affects the jump point, abscissa corresponding to peak point and amplitude of transmitted waves, and the amplitude of reflected waves. While the freeze-thaw number shows a great effect on the jump point, abscissa corresponding to peak point, and amplitude of transmitted waves during the first impact process. The cumulative damage factor of red sandstone specimen exhibits a good negative correlation with the dynamic peak stress. After the combination effects of freeze-thaw and cyclic impact, the cracks inside red sandstone spread along the grain boundary and connect with the pores to form a complex network. © 2024 Explosion and Shock Waves. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [1] Study on Mechanical Properties and Damage Characteristics of Red Sandstone under Freeze-thaw and Load
    Shi, Lei
    Liu, Yang
    Meng, Xiangzhen
    Zhang, Huimei
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [2] Dynamic Mechanical Properties and Damage Mechanism of Freeze-Thaw Sandstone under Acid Corrosion
    Cao, Xiaoxiao
    Feng, Meimei
    Yuan, Kangsheng
    GEOFLUIDS, 2021, 2021
  • [3] Study on tensile damage characteristics of sandstone under freeze-thaw cycles
    Hui Liu
    YeHui Yun
    Long Jin
    JiangHao Lin
    Yao Zhang
    Yong Luo
    JianXi Ren
    Sciences in Cold and Arid Regions, 2021, 13 (05) : 379 - 393
  • [4] Study on tensile damage characteristics of sandstone under freeze-thaw cycles
    Liu, Hui
    Yun, YeHui
    Jin, Long
    Lin, JiangHao
    Zhang, Yao
    Luo, Yong
    Ren, JianXi
    SCIENCES IN COLD AND ARID REGIONS, 2021, 13 (05): : 379 - 393
  • [5] Damage characteristics of sandstone pore structure under freeze-thaw cycles
    Li Jie-lin
    Zhu Long-yin
    Zhou Ke-ping
    Liu Han-wen
    Cao Shan-peng
    ROCK AND SOIL MECHANICS, 2019, 40 (09) : 3524 - 3532
  • [6] Morphological damage and strength deterioration of red sandstone under freeze-thaw cycles
    Wang, Jincheng
    Cui, Deshan
    Chen, Qiong
    Chen, Juxiang
    Dai, Mingjie
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2025, 17 (02) : 671 - 687
  • [7] Fatigue characteristics and energy evolution analysis of red sandstone under the coupling of freeze-thaw and cyclic loading
    Li, Jing
    Li, Jiangteng
    Shi, Zhanming
    Wang, Mengxiang
    Tan, Han
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 185
  • [8] Damage Evolution and Acoustic Emission Characteristics of Sandstone under Freeze-Thaw Cycles
    Wang, Chuangye
    You, Ru
    Lv, Wenyu
    Sui, Qingrui
    Yan, Yuhang
    Zhu, Huangjin
    ACS OMEGA, 2024, 9 (04): : 4892 - 4904
  • [9] Research on Deterioration Mechanism and Dynamic Triaxial Compression Characteristics of Freeze-Thaw Sandstone
    Meng, Fandong
    Zhai, Yue
    Li, Yubai
    Xie, Qingyu
    Gao, Huan
    Li, Yan
    Dong, Qi
    ROCK MECHANICS AND ROCK ENGINEERING, 2023, 56 (03) : 2333 - 2355
  • [10] Coupled effects of chemical environments and freeze-thaw cycles on damage characteristics of red sandstone
    Gao, Feng
    Wang, Qiaoli
    Deng, Hongwei
    Zhang, Jian
    Tian, Weigang
    Ke, Bo
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2017, 76 (04) : 1481 - 1490