Aerosol classification under non-clear sky conditions based on geostationary satellite FY-4A and machine learning models

被引:1
作者
Chen, Bin [1 ,2 ]
Ye, Qia [1 ,2 ]
Zhou, Xingzhao [1 ,3 ]
Song, Zhihao [1 ,2 ]
Ren, Yuxiang [1 ,2 ]
机构
[1] Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China
[2] Collaborat Innovat Ctr Western Ecol Secur, Lanzhou 730000, Peoples R China
[3] Sun Yat sen Univ, Coll Atmospher Sci, Zhuhai 519082, Peoples R China
关键词
FY-4A; CALIPSO; Machine learning; Aerosol classification; Cloud-aerosol mixture; DUST AEROSOL; MODIS; RETRIEVAL; REANALYSIS; DIFFERENCE; NETWORK; AERONET; IMPACT; PART;
D O I
10.1016/j.atmosenv.2024.120891
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurately identifying and classifying aerosols is a key to understanding their sources, assessing their chemical and physical changes, and comprehending their feedback mechanisms within climate system. However, existing aerosol classification methods have two limitations: First, ground remote sensing products have limited spatial coverage, and polar orbit satellite data suffer from low temporal resolution. Second, satellite-based aerosol classification methods are affected by cloud interference, resulting in data gaps. To overcome these challenges, this study utilized the extreme tree algorithm (ET) and integrated the FY-4A TOAR dataset with meteorological and geographical information, using a sequential forward selection method for optimal input feature selection. Focusing on the Asian region (70-140 degrees E, 15-55 degrees N), three models were used to generate hourly aerosol classification products: the Clear air-Cloud-Aerosol-Mixed cloud and aerosol (CCAM-ET) model, the Dust-Polluted dust-Other aerosols-Mixed aerosols (DPOM-ET) model under clear sky conditions, and the DPOM-ET model under non-clear sky conditions. The evaluated accuracy of the CCAM-ET model was 85%, demonstrating its effectiveness in identifying cloud and aerosol under various conditions. The CCAM model can achieve an accuracy of 78% when aerosols are located above clouds and 59% when they are below clouds. The DPOM-ET model achieved an evaluation accuracy of 89% for clear sky areas and 87% for non-clear sky areas, respectively, and was superior to traditional methods. Long-term data indicated a significant correlation between the distributions of different types of aerosols and human activity. Polluted dust is common in southwest China during spring and in northern China during winter. Additionally, from 2018 to 2020, dust occurrences decreased on the Indian Peninsula, while non-dust aerosols increased significantly in India and Southeast Asia.
引用
收藏
页数:18
相关论文
共 31 条
[31]   Spatial Predictive Modeling of Liver Fluke Opisthorchis viverrine (OV) Infection under the Mathematical Models in Hexagonal Symmetrical Shapes Using Machine Learning-Based Forest Classification Regression [J].
Pumhirunroj, Benjamabhorn ;
Littidej, Patiwat ;
Boonmars, Thidarut ;
Artchayasawat, Atchara ;
Prasertsri, Narueset ;
Khamphilung, Phusit ;
Sangpradid, Satith ;
Buasri, Nutchanat ;
Uttha, Theeraya ;
Slack, Donald .
SYMMETRY-BASEL, 2024, 16 (08)