CHOLESKY-LIKE PRECONDITIONER FOR HODGE LAPLACIANS VIA HEAVY COLLAPSIBLE SUBCOMPLEX

被引:0
作者
Savostianov, Anton [1 ,2 ]
Tudisco, Francesco [1 ,3 ]
Guglielmi, Nicola [1 ]
机构
[1] Gran Gran Sasso Sci Inst, Laquila, Italy
[2] Rhein Westfal TH Aachen, Aachen, Germany
[3] Univ Edinburgh, Maxwell Maxwell Inst, Edinburgh, Scotland
关键词
simplicial complex; Hodge Laplacian; graph Laplacian; Cholesky preconditioner; Gauss elimination; collapsible simplicial complex;
D O I
10.1137/23M1626396
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Techniques based on k th order Hodge Laplacian operators L k are widely used to describe the topology as well as the governing dynamics of high-order systems modeled as simplicial complexes. In all of them, it is required to solve a number of least-squares problems with L k as coefficient matrix, for example, in order to compute some portions of the spectrum or integrate the dynamical system, thus making a fast and efficient solver for the least-squares problems highly desirable. To this aim, we introduce the notion of an optimal weakly collapsible sub complex used to construct an effective sparse Cholesky-like preconditioner for L k that exploits the topological structure of the simplicial complex. The performance of the preconditioner is tested for the conjugate gradient method for least-squares problems (CGLS) on a variety of simplicial complexes with different dimensions and edge densities. We show that, for sparse simplicial complexes, the new preconditioner significantly reduces the condition number of L k and performs better than the standard incomplete Cholesky factorization.
引用
收藏
页码:1827 / 1849
页数:23
相关论文
共 29 条
  • [1] Higher-order organization of complex networks
    Benson, Austin R.
    Gleich, David F.
    Leskovec, Jure
    [J]. SCIENCE, 2016, 353 (6295) : 163 - 166
  • [2] Bjorck A, 1998, SIAM J MATRIX ANAL A, V19, P720
  • [3] Black M, 2022, PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, P226
  • [4] CHEN Y.-C., 2021, Advances in Neural Information Processing Systems, V34, P15695
  • [5] CHEN Y.-C., 2021, CoRR abs/2103.07626
  • [6] Cohen M.B., 2014, P 25 ANN ACM SIAM S, P204, DOI [10.1137/1, DOI 10.1137/1]
  • [7] DEMMEL J. W., 1997, Applied Numerical Linear Algebra, P361, DOI [10.1137/1.9781611971446.ch7, DOI 10.1137/1.9781611971446.CH7, 10.1137/1.9781611971446, DOI 10.1137/1.9781611971446]
  • [8] Ebli Stefania, 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), P1083, DOI 10.1109/ICMLA.2019.00182
  • [9] Stability of synchronization in simplicial complexes
    Gambuzza, L. V.
    Di Patti, F.
    Gallo, L.
    Lepri, S.
    Romance, M.
    Criado, R.
    Frasca, M.
    Latora, V.
    Boccaletti, S.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Golub G., 2009, Matrix Computations, P392