Feature extraction;
Engines;
Predictive models;
Convolution;
Data models;
Nonhomogeneous media;
Kernel;
Echo state network (ESN);
empirical-mode decomposition (EMD);
multiscale convolutional neural network (MSCNN);
remaining useful life (RUL);
turbofan engine;
USEFUL LIFE PREDICTION;
PROGNOSTICS;
ENSEMBLE;
STATE;
D O I:
10.1109/TAES.2024.3402199
中图分类号:
V [航空、航天];
学科分类号:
08 ;
0825 ;
摘要:
In this article, a hybrid network framework based on the empirical-mode decomposition improved by cubic spline interpolation (CSI-EMD) and double-channel multilayer feature fusion network (DCM-FFN) has been proposed to improve the accuracy of remaining useful life (RUL) prediction. The CSI-EMD is an empirical-mode decomposition (EMD) method that we have improved, which decomposes the multisensor time series into a bunch of intrinsic-mode functions, and then the DCM-FFN predicts the concrete states and summarizes the final RUL prediction value. Our proposed CSI-EMD method successfully alleviates the endpoint effect problem in the traditional EMD methods. In order to improve the ability of neural network to extract degraded signals, a method combining multiscale convolutional neural networks and echo state network is adopted in the framework. The proposed approach is evaluated by aircraft turbine engine data from NASA (FD001-FD004). Compared with the existing state-of-the-art methods, the root-mean-square error and score of the proposed method decreased by 15.33% and 54.86%, respectively. Therefore, results and comparisons show that the prediction performance of the proposed method has been improved greatly.
机构:
Harbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USAHarbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
Dong, Hancheng
Jin, Xiaoning
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USAHarbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
Jin, Xiaoning
Lou, Yangbing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USAHarbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
Lou, Yangbing
Wang, Changhong
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
机构:
Harbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USAHarbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
Dong, Hancheng
Jin, Xiaoning
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USAHarbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
Jin, Xiaoning
Lou, Yangbing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USAHarbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
Lou, Yangbing
Wang, Changhong
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China