Real-Time Scheduling of Electric Bus Flash Charging at Intermediate Stops: A Deep Reinforcement Learning Approach

被引:2
|
作者
Bi, Xiaowen [1 ]
Wang, Ruoheng [2 ]
Ye, Hongbo [2 ]
Hu, Qian [3 ]
Bu, Siqi [4 ,5 ]
Chung, Edward [2 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[3] Hong Kong Baptist Univ, Dept Phys, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Policy Res Ctr Innovat & Technol, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2024年 / 10卷 / 03期
关键词
Batteries; Real-time systems; Uncertainty; Planning; Biological system modeling; Distribution networks; Schedules; Deep reinforcement learning (DRL); distribution network; electric bus; flash charging scheduling; pantograph chargers; TRANSPORT-SYSTEMS; DESIGN; FLEET;
D O I
10.1109/TTE.2023.3343810
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The flash charging of electric buses (EBs) refers to the charging of EBs with pantograph chargers at intermediate stops. By "charging less but more often," flash charging enables EBs to use small batteries, thus improving fuel economy while meeting mileage requirements. However, in real-time operation, flash charging can be susceptible to uncertainties such as passenger demand and electrical load-the former determines how long EB dwells at stops, beyond which charging would delay the transit service, while the latter together with charging loads could put distribution networks at risk. To address the above uncertainties, this article proposes a deep reinforcement learning (DRL) approach for the real-time scheduling of EB flash charging in terms of location, timing, and duration. Numerical results show that: 1) the proposed DRL approach can find efficient and reliable scheduling policies that outperform benchmarks such as the real-world "uniform" policy by making better use of EBs' layover at stops based on real-time information; 2) our approach remains effective when applied to flash charging systems with renewable energy resource integration or different scales; and 3) pantograph chargers should have sufficiently high power rating to support an efficient transit service while without risking the distribution network, and an "adequate" charger setup can be designated for improved utilization based on our approach.
引用
收藏
页码:6309 / 6324
页数:16
相关论文
共 50 条
  • [11] Real-Time Scheduling for Dynamic Partial-No-Wait Multiobjective Flexible Job Shop by Deep Reinforcement Learning
    Luo, Shu
    Zhang, Linxuan
    Fan, Yushun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 3020 - 3038
  • [12] A robust coordinated charging scheduling approach for hybrid electric bus charging systems
    Huang, Di
    Zhang, Jinyu
    Liu, Zhiyuan
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2023, 125
  • [13] Real-Time Multi-Home Energy Management with EV Charging Scheduling Using Multi-Agent Deep Reinforcement Learning Optimization
    Kaewdornhan, Niphon
    Srithapon, Chitchai
    Liemthong, Rittichai
    Chatthaworn, Rongrit
    ENERGIES, 2023, 16 (05)
  • [14] Deep Reinforcement Learning for Charging Scheduling of Electric Vehicles Considering Distribution Network Voltage Stability
    Liu, Ding
    Zeng, Peng
    Cui, Shijie
    Song, Chunhe
    SENSORS, 2023, 23 (03)
  • [15] Effective Charging Planning Based on Deep Reinforcement Learning for Electric Vehicles
    Zhang, Cong
    Liu, Yuanan
    Wu, Fan
    Tang, Bihua
    Fan, Wenhao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (01) : 542 - 554
  • [16] Hybrid DVFS Scheduling for Real-Time Systems Based on Reinforcement Learning
    Muhammad, Fakhruddin
    ul Islam, Mahbub
    Lin, Man
    IEEE SYSTEMS JOURNAL, 2017, 11 (02): : 931 - 940
  • [17] Real-Time Charging Scheduling of Automated Guided Vehicles in Cyber-Physical Smart Factories Using Feature-Based Reinforcement Learning
    Lin, Chun-Cheng
    Chen, Kun-Yang
    Hsieh, Li-Tsung
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4016 - 4026
  • [18] Learning-Based Real-Time Aggregate Flexibility Provision and Scheduling of Electric Vehicles
    Zhang, Mingyang
    Yang, Hongrong
    Xu, Yinliang
    Sun, Hongbin
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (06) : 5840 - 5852
  • [19] Deep Reinforcement Learning for Real-Time Energy Management in Smart Home
    Wei, Guixi
    Chi, Ming
    Liu, Zhi-Wei
    Ge, Mingfeng
    Li, Chaojie
    Liu, Xianggang
    IEEE SYSTEMS JOURNAL, 2023, 17 (02): : 2489 - 2499
  • [20] Rolling Horizon Approach for Real-Time Charging and Routing of Autonomous Electric Vehicles
    Bagherinezhad, Avishan
    Alizadeh, Mahnoosh
    Parvania, Masood
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2024, 11 : 94 - 103