Real-Time Scheduling of Electric Bus Flash Charging at Intermediate Stops: A Deep Reinforcement Learning Approach

被引:2
|
作者
Bi, Xiaowen [1 ]
Wang, Ruoheng [2 ]
Ye, Hongbo [2 ]
Hu, Qian [3 ]
Bu, Siqi [4 ,5 ]
Chung, Edward [2 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[3] Hong Kong Baptist Univ, Dept Phys, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Policy Res Ctr Innovat & Technol, Hong Kong, Peoples R China
关键词
Batteries; Real-time systems; Uncertainty; Planning; Biological system modeling; Distribution networks; Schedules; Deep reinforcement learning (DRL); distribution network; electric bus; flash charging scheduling; pantograph chargers; TRANSPORT-SYSTEMS; DESIGN; FLEET;
D O I
10.1109/TTE.2023.3343810
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The flash charging of electric buses (EBs) refers to the charging of EBs with pantograph chargers at intermediate stops. By "charging less but more often," flash charging enables EBs to use small batteries, thus improving fuel economy while meeting mileage requirements. However, in real-time operation, flash charging can be susceptible to uncertainties such as passenger demand and electrical load-the former determines how long EB dwells at stops, beyond which charging would delay the transit service, while the latter together with charging loads could put distribution networks at risk. To address the above uncertainties, this article proposes a deep reinforcement learning (DRL) approach for the real-time scheduling of EB flash charging in terms of location, timing, and duration. Numerical results show that: 1) the proposed DRL approach can find efficient and reliable scheduling policies that outperform benchmarks such as the real-world "uniform" policy by making better use of EBs' layover at stops based on real-time information; 2) our approach remains effective when applied to flash charging systems with renewable energy resource integration or different scales; and 3) pantograph chargers should have sufficiently high power rating to support an efficient transit service while without risking the distribution network, and an "adequate" charger setup can be designated for improved utilization based on our approach.
引用
收藏
页码:6309 / 6324
页数:16
相关论文
共 50 条
  • [1] Real-Time Planning of Route, Speed, and Charging for Electric Delivery Vehicles: A Deep Reinforcement Learning Approach
    Bi, Xiaowen
    Shen, Minyu
    Gu, Weihua
    Chung, Edward
    Wang, Yuhong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 7066 - 7082
  • [2] Model-Free Real-Time EV Charging Scheduling Based on Deep Reinforcement Learning
    Wan, Zhiqiang
    Li, Hepeng
    He, Haibo
    Prokhorov, Danil
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) : 5246 - 5257
  • [3] Developing Real-Time Scheduling Policy by Deep Reinforcement Learning
    Bo, Zitong
    Qiao, Ying
    Leng, Chang
    Wang, Hongan
    Guo, Chaoping
    Zhang, Shaohui
    2021 IEEE 27TH REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS 2021), 2021, : 131 - 142
  • [4] Reinforcement Learning for Real-Time Pricing and Scheduling Control in EV Charging Stations
    Wang, Shuoyao
    Bi, Suzhi
    Zhang, Yingjun Angela
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (02) : 849 - 859
  • [5] Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach
    Azzouz, Imen
    Fekih Hassen, Wiem
    ENERGIES, 2023, 16 (24)
  • [6] REAL-TIME INFORMATION AT BUS STOPS
    WOOD, P
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1985, 36 (12) : 1141 - 1141
  • [7] Quantum Reinforcement Learning for real-time optimization in Electric Vehicle charging systems
    Xu, Hairun
    Zhang, Ao
    Wang, Qingle
    Hu, Yang
    Fang, Fang
    Cheng, Long
    APPLIED ENERGY, 2025, 383
  • [8] Distributed Real-Time Scheduling in Cloud Manufacturing by Deep Reinforcement Learning
    Zhang, Lixiang
    Yang, Chen
    Yan, Yan
    Hu, Yaoguang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8999 - 9007
  • [9] A Deep-Reinforcement-Learning-Based Optimization Approach for Real-Time Scheduling in Cloud Manufacturing
    Zhu, Huayu
    Li, Mengrong
    Tang, Yong
    Sun, Yanfei
    IEEE ACCESS, 2020, 8 : 9987 - 9997
  • [10] Real-time online charging control of electric vehicle charging station based on a multi-agent deep reinforcement learning
    Li, Yujing
    Zhang, Zhisheng
    Xing, Qiang
    ENERGY, 2025, 319