Selective laser melting of 316L stainless steel: porosity dependence on geometric feature size

被引:0
|
作者
Porter, Quinton [1 ,2 ]
Du, Wenchao [3 ]
Ma, Chao [1 ,2 ,3 ,4 ]
机构
[1] Texas A&M Univ, Dept Engn Technol & Ind Distribut, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77843 USA
[4] Arizona State Univ, Sch Mfg Syst & Networks, Mesa, AZ 85212 USA
关键词
Selective laser melting; stainless steel; porosity; geometric feature size; FORMATION MECHANISM; PROCESS PARAMETERS; MICROSTRUCTURE; ALLOY;
D O I
10.1016/j.mfglet.2024.09.111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This technical brief reports an experimental study on the effect of geometric feature size on the porosity in parts made via selective laser melting. Cylindrical features of different diameters were designed on a single part and printed using the same scan strategy. The resultant pores at different cylindrical feature diameters were captured by optical microscopy. The image processing results showed that as the cylindrical feature diameter decreased from 10 mm to 0.8 mm, the porosity increased from 0.11 % to 4.1 %, and the maximum pore size increased from 41.7 mu m to 102.2 mu m. To identify the reason for this interesting finding, the average areal energy density was calculated at each cylindrical feature diameter. The calculations showed that the different cylindrical feature diameters resulted in local energy density discrepancies. Because the scan strategy had a disparity for the border in comparison to the volume infill, and the areal ratio of the border to the volume infill naturally varied at different cylindrical feature diameters, the average areal energy density was found to vary significantly for cylindrical features of different diameters. The average areal energy density increased from 2.8 J/mm(2) to 5.9 J/mm(2) as the cylindrical feature diameter decreased from 10 mm to 0.8 mm. That change in the average areal energy density was identified as the cause for the porosity variation in this study.
引用
收藏
页码:895 / 898
页数:4
相关论文
共 50 条
  • [1] Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting
    Yusuf, Shahir Mohd
    Chen, Yifei
    Boardman, Richard
    Yang, Shoufeng
    Gao, Nong
    METALS, 2017, 7 (02):
  • [2] 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting
    Li, Ruidi
    Liu, Jinhui
    Shi, Yusheng
    Du, Mingzhang
    Xie, Zhan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2010, 19 (05) : 666 - 671
  • [3] Use of Bimodal Particle Size Distribution in Selective Laser Melting of 316L Stainless Steel
    Coe, Hannah G.
    Pasebani, Somayeh
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2020, 4 (01):
  • [4] Effect of the Particle Size of 316L Stainless Steel on the Corrosion Characteristics of the Steel Fabricated by Selective Laser Melting
    Chen, Wei
    Yin, Guangfu
    Huang, Zhongbing
    Feng, Zai
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (11): : 10217 - 10232
  • [5] 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting
    Ruidi Li
    Jinhui Liu
    Yusheng Shi
    Mingzhang Du
    Zhan Xie
    Journal of Materials Engineering and Performance, 2010, 19 : 666 - 671
  • [6] Porosity Evaluation and Analysis for 316L Stainless Steel by Selective Laser Melting Using Laser Ultrasonic Technology
    Lin, Yiqin
    Zou, Dapeng
    Ye, Guoliang
    Ji, Xuanrong
    Zhang, Yongkang
    Jiang, Xiaoming
    Zhang, Yanxi
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2024, 25 (06) : 1209 - 1218
  • [7] Cavitation erosion resistance of 316L stainless steel fabricated using selective laser melting
    Ding, Hongqin
    Tang, Qing
    Zhu, Yi
    Zhang, Chao
    Yang, Huayong
    FRICTION, 2021, 9 (06) : 1580 - 1598
  • [8] Additive Manufacturing of 316L stainless steel by Selective Laser Melting
    Moreira Montuori, Riccardo Augusto
    Figueira, Gustavo
    Cataldi, Thiago Pacagnan
    de Alcantara, Nelson Guedes
    Bolfarini, Claudemiro
    Coelho, Reginaldo Teixeira
    Gargarella, Piter
    SOLDAGEM & INSPECAO, 2020, 25 (25): : 1 - 15
  • [9] Effect of Process Parameters on Defect in Selective Laser Melting of 316L Stainless Steel
    Wang Lei
    Guo Kai
    Cong Jiaqi
    Bai Huiyi
    Kang Xueliang
    Ji Yunping
    Li Yiming
    Ren Huiping
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (05)
  • [10] Selective laser melting of stainless steel 316L with low porosity and high build rates
    Sun, Zhongji
    Tan, Xipeng
    Tor, Shu Beng
    Yeong, Wai Yee
    MATERIALS & DESIGN, 2016, 104 : 197 - 204